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ABSTRACT 
 
 
 
Inverse Synthetic Aperture Radar (ISAR) provides full-range detection and 

classification of sea-based and air-based targets through two-dimensional range-Doppler 

imaging.  The Naval Postgraduate School (NPS) has developed a custom integrated 

circuit that can simulate false ISAR images in order to fool enemy ISAR platforms.  To 

validate specific hardware choices within this design, this thesis explores the effect on 

image quality of an overflow occurring within the final 16-bit summation adder of this 

circuit.  Three solutions to the problem of overflows are presented and analyzed.   

The logical extension of ISAR development, that of three-dimensional target 

imaging, is next presented through the discussion of 3D monopulse radar, 3D 

interferometric ISAR, and a 3D, three-receiver ISAR.  The relative strengths of each 

approach are compared, along with both MATLAB and Extensible 3D (X3D) Graphics 

software models created for one specific 3D ISAR implementation.  Through the 

superposition of 2D ISAR images it is shown how 3D ISAR images may be created.  

Moreover, emphasis is placed on using this knowledge to both enhance current 2D ISAR 

techniques and to modify the false-target chip design to handle 3D ISAR return signals.  

The thesis concludes with a study of Non-Uniform Rational B-Splines, through which the 

X3D software model was created. 
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EXECUTIVE SUMMARY 
 

This thesis provides both model validation for the current Digital Image 

Synthesizer (DIS) design and research into the possibility of creating three-dimensional 

Inverse Synthetic Aperture Radar (ISAR) images from current two-dimensional (2D) 

images.  The DIS is a hardware-implemented method of generating false ISAR return 

signals based upon realistic ship-type coefficients.  The goal of this system is to fool 

traditional ISAR detection platforms such as the AN/APS-137 radar aboard surveillance 

aircraft.   

Model validation is accomplished through the systematic analysis of hardware 

design choices leading up to the subsequent overflow of the 16-bit final summation adder 

within the DIS.  This final-summation adder sums the modulated phase samples from up 

to 512 range bins within the DIS in order to create the desired return signal.  

Unfortunately, adder overflow degrades overall image quality by inadvertently toggling 

the sign bit of the adder.  The most cost-effective solution to this problem is to modulate 

the overall gain of the signal by reducing the bit-level precision of the binary gain shifter.  

Although some dynamic resolution is lost, image correlation to within 0.9898 of the ideal 

image is achieved.  Further model validation is achieved through the creation of software 

within MATLAB to both generate 2D range-Doppler images and extract coefficients 

from realistic target data.  These coefficients can then be used to run the DIS. 

A foundation for three-dimensional ISAR is laid through the discussion of 

previous work in the field including 3D monopulse radar, 3D interferometric ISAR, and a 

three-receiver approach to 3D ISAR.  A comparison between the methods shows a 

common thread lies within the back scattering effects contained within the phase of 

coherent range bins for multiple 2D ISAR images. With this information, the third 

dimension of elevation can be constructed.  Tools for visually analyzing 3D ISAR 

through the overlay of 2D images on a 3D geometric model within the graphical 

environment of X3D are presented. By examining feature correlation within the 

simulation, insight into both future 3D ISAR techniques and current 2D ISAR techniques 

is gained. 
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I. INTRODUCTION 

A. THREE DIMENSIONAL (3D) IMAGE SYNTHESIS OVERVIEW 

The United States Military has remained a leading world power over the past fifty 

years.  During this time, the fast-paced advance of technology has forced the military to 

be on the leading edge of that technology in order to remain one step ahead of potential 

enemies.  Being on the technological forefront is especially important on the battlefield 

where soldiers’ lives are at stake.  The ability to both quickly and accurately detect and 

classify enemy targets provides the extra time needed to properly coordinate action 

against threats waiting just beyond the horizon.  Synthetic Aperture Radar (SAR) has the 

capability to detect, image, and classify land-based targets.  A modified approach to 

SAR, known as Inverse Synthetic Aperture Radar (ISAR) allows the classification of 

both sea-based targets and enemy aircraft through the use of two-dimensional range-

Doppler imaging.  While these current radar systems provide an advantage, their ever-

increasing distribution poses a threat to future operations conducted by the U. S. and its 

allies. 

Research is currently underway at the Naval Postgraduate School (NPS) to 

develop a custom integrated circuit (IC) that can accurately create the necessary ISAR 

return signature for a sea-based target in the attempt to fool enemy radar.  A software 

simulation of the IC’s hardware design was developed through the thesis research of 

Fernando Le Dantec [1] at the Naval Postgraduate School.  This simulation models the 

entire false-target process from incoming radar chirp pulse to outgoing radar return 

signal.  It serves as a foundation for the continued investigation of this thesis into IC 

design and concept validation. 

Although the current software simulation has been shown to correctly model chip 

behavior, the integrity of the overall chip design must still be scrutinized in light of 

specific hardware implementation choices.  One of these choices is the decision to use a 

binary power-of-two gain shifter to implement signal amplitude modulation by stored 

false target coefficients.  This approach efficiently quantizes the gain into discrete levels.  

The disadvantage is that when the final modulated pulses are summed to create the 
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combined return signal, an overflow may occur downstream in the chip.  The first part of 

this thesis involves an analysis of this overflow, providing detail on the source of the 

overflow, its effect on image quality, and two novel ways to deal with the problem.  It is 

shown that acceptable image quality may be retained without significant loss in dynamic 

resolution by simply lowering the bit-precision and, thus, the signal gain of the power-of-

two gain shifter.   

The second part of this thesis deals with the output of the Digital Image 

Synthesizer (DIS) integrated circuit.  Up until this point, the only verification of correct 

operation has been through the use of sample coefficients for one particular ship profile.  

However, new data is being acquired from the Naval Research Laboratory detailing an 

entire scenario in which a sea-based target approaches, completes a 180-degree turn and 

steams off relative to a fixed ISAR platform.  The acquisition of this data allows for both 

the creation of 2D range-Doppler images based on this received data and for the 

extraction of gain coefficients from the data by which the DIS model may be run.  The 

output of the two models can then be compared to verify the accuracy of the DIS. 

The final part of the thesis deals with the exploration of the logical extension of 

ISAR systems.  While competing countries develop their own ISAR and counter-ISAR 

technologies, the foundation will already be laid for the United States to take the next 

step into 3D ISAR imaging.  The premise for current research in 3D ISAR is laid, 

alongside a discussion of both the implementation of a 3D ISAR and the benefits of 

doing so.  An X3D model is presented in order to visually gain a concept of the 

advantages gained from simply overlaying multiple 2D images on a 3D ship model.  This 

approach allows for insight into new features for and problems with current 2D ISAR 

implementation. The section concludes with an emphasis on how the current 2D DIS may 

be converted to a 3D DIS for improved counter ISAR capability. 

Through the creation of the tools necessary to conduct research for this thesis, the 

author has provided significant advances in terms of providing Non-Uniform Rational B-

Spline (NURBS) support to the X3D simulation platform used in developing the 3D 

ISAR model.  This research is included in Chapter 6 as part of the three-dimensional 

visualization tools discussion. 
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B. PRINCIPAL CONTRIBUTIONS 

Through the analysis of possible hardware overflows within the final 16-bit 

summation adder of the Digital Image Synthesizer (DIS) chip, certain design problems 

are uncovered that significantly degrade the overall quality of the resulting 2D range-

Doppler images.  These problems may be exploited by enemy forces to differentiate 

between real and false return signals, thus invalidating the value of the DIS.  However, by 

lowering the overall gain of the return signal through lowering the bit-quantization of the 

power-of-two gain shifter in the DIS, the problem of overflows in the final summation 

adder is resolved without significant loss in dynamic signal range. 

Two-dimensional ISAR has the disadvantage that it cannot resolve scattering 

elements within the elevation dimension of a target.  For this reason, it is difficult to 

produce a three-dimensional ISAR image by conventional techniques.  Through 

exploring recent approaches to producing 3D ISAR, and subsequently developing a 

software-based model to superimpose 2D ISAR images on a 3D target, the foundation for 

future work in implementing advanced 3D ISAR algorithms is laid.  Information is also 

presented on how the current DIS model must be modified to support the creation of 

return signals that include the extra back-scattering information needed to resolve the 

third dimension of elevation. 

Finally, a significant contribution is made to the X3D graphics community 

through the implementation of Non-Uniform Rational B-Splines (NURBS).  NURBS is a 

method of mathematically describing smooth curves and surfaces through a minimal set 

of control points.  They have been a part of the X3D specification since 1997 but until 

now have not been uniformly implemented for general-purpose use within the X3D 

environment.  This contribution includes a plug-in for the industry standard graphics 

modeling package, Maya, that allows for complex NURBS models to be exported to X3D 

format while maintaining their full resolution. 
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C. THESIS OUTLINE 

Chapter II gives an introduction to high-resolution radar, including the general 

principles of radar aperture and range resolution.  Important mathematical equations are 

developed to describe each aspect presented.  Emphasis is placed on both Synthetic 

Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR).  The unclassified 

specifications for the AN/APS-137 and AN/APS-147 radar platforms are presented as 

well. 

Chapter III describes the current work that has been done on the Digital Image 

Synthesizer chip to create false ISAR images.  A development of important equations is 

given for the complete DIS process, including the intercepted chirp pulse signal, range 

and azimuth compression, gain and phase modulation, and finally signal summation and 

output.  The corresponding MATLAB model of the DIS, based on the research of 

Fernando Le Dantec [1], is briefly presented. 

Chapter IV follows the development given in Chapter II by examining the specific 

hardware choices pertaining to the possible overflow within the final 16-bit summation 

adder.  Reasons for the overflow are discussed along with three approaches to the issue 

and an analysis of each approach.  Simulated ISAR images are presented to support the 

analysis.   

Chapter V describes in more detail the creation of a 2D range-Doppler image and 

the coefficient extraction necessary to run the DIS from real ISAR data.  The extension to 

the original software model of the DIS that allows for external data to be processed is 

presented.   

Chapter VI examines three approaches to 3D ISAR including 3D monopulse 

radar, interferometric ISAR, and a three-receiver approach to 3D ISAR.  Included are 

possible modifications that may be made to the current DIS to support one of these 3D 

ISAR methods.  This discussion is followed by an overview of the X3D virtual 

environment software and the X3D model created to superimpose multiple 2D ISAR 

images on a 3D target.  The chapter ends with a detailed discussion of the NURBS 

component of X3D as implemented for the 3D ISAR model. 
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Chapter VII gives a final summary and conclusion, connecting the principle 

contributions of each section and providing an overview of future work that may be done 

in the realm of 3D ISAR. 
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II. SYNTHETIC APERTURE RADAR (SAR) 

Current high-resolution radar has the capability to properly detect and process 

radar return signals from individual scattering elements in more than one dimension.  

Much more than simple range and bearing, this capability allows high-resolution images 

to be created of the target.  Images such as the one shown in Figure 2.1 can be used to 

provide precise target identification at full range, thus posing a hazard to any naval 

operation that wishes to remain anonymous.  The basic technology that allows for this 

kind of high-resolution imaging is Synthetic Aperture Radar (SAR).  This chapter will 

present the fundamentals behind high-resolution radar including SAR, with particular 

emphasis on the operating mode known as Inverse Synthetic Aperture Radar (ISAR).  

ISAR will be shown to expand the functionality of SAR by imaging moving targets such 

as planes and ships in contrast to the land-based targets of SAR. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 2D Range-Doppler Image for Infinite (Ideal) Resolution. 
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A. GENERAL RADAR PRINCIPLES 

The direction directly along the line of sight of a radar beam is known as the slant 

range.  Following the development in [2], the fundamental equation for resolving 

scattering elements in the slant-range for high-resolution radar is  

2s
cr
β

∆ ≈      2.1 

where c  is the speed of light and β is the bandwidth of the radar.  Specifically, high-

resolution radar refers to systems transmitting signals within the wideband range.  When 

a radar signal is transmitted, the received radar echo-power under free space propagation 

conditions for a target uniformly illuminated by an antenna beam is represented as  

24
t t

I
PGs

Rπ
=      2.2 

where 

tP  is the RF power in watts from the transmitter, 

tG  is the transmitter antenna gain, and 

R   is the target range in meters. 

The effective aperture of an antenna is defined as the ratio of received power to the power 

density of the incident wave.  A general equation relating the gain of an antenna to its 

effective aperture is given by  

2

4G Aπ
λ

=      2.3 

where λ  is the wavelength of the transmitted signal and A  is the effective aperture of the 

antenna.  Notice how a larger aperture produces a larger gain.  For a single antenna used 

to transmit and receive pulses, the gain of the transmitter equals the gain of the receiver 

( t rG G = 2G ) and Equation 2.3 becomes  
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2 2

3 4(4 )
tPGS

R
λ σ

π
=       2.4 

where σ  is the radar cross-section of the target.  

In the presence of external noise and signal losses, the ability of a radar system to 

detect the return pulse is defined as its sensitivity, modeled by 

( )r s n n inS kT F S Nβ=      2.5 

where 

k  is Boltzmann’s constant, 

sT  is the receiving noise temperature, 

nβ  is the receiving noise bandwidth, 

( )
( )

in
n

out

S NF
S N

=  , is  the  ratio of input signal-to-noise to output signal-to-noise.   

Combining Equations 2.4 and 2.5 yields the exact form for representing the range of a 

single antenna in terms of signal to noise ratio and in the presence of system losses   

1/ 42 2

3 .
(4 ) ( / )

t

s n n in

PGR
kT F S N

λ σ
π β

 
=  
 

    2.6 

These equations will be the basis for developing the formulas to model high resolution 

SAR and ISAR. 

 

B. (SAR) BACKGROUND 

The term cross-range refers to the distance perpendicular to the line of sight, or 

slant-range, of the radar.  Cross-range is also referred to as azimuth resolution.  A real 

aperture radar relies upon the physical dimensions of the antenna to dictate the maximum 

cross-range resolution of the radar beam.  This cross-range resolution is approximately 

equal to the 3-dB beamwidth of the antenna times the range [3], or  

3 [radians]dB L
λθ ≅       2.7 
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where L  is the length of the antenna.  Thus to obtain high resolution, either a very short 

wavelength, or a very long antenna is needed.  Due to atmospheric limitations, the 

smallest achievable wavelength for long-range mapping is around 3 cm.  The idea of 

using a very long antenna is simply not feasible on most surveillance aircraft.  For 

example, it would take a 16-foot antenna operating in the X Band region to track small 

craft at distances of 10 nautical miles [3].   

In response to this need to obtain higher resolution without increasing the antenna 

length or decreasing the wavelength, the Synthetic Aperture Radar concept was 

developed.  The general theory behind SAR is to use a small, side-looking antenna 

capable of transmitting a narrow pulse whose beamwidth is approximately half that of a 

traditional aperture. The antenna is mounted on a forward moving aircraft such that the 

integration of coherent pulses creates a cross-range dimension that would correspond to 

what a real, and much larger, aperture would produce.  A finite length of time is therefore 

required to synthesize the return pulses and create the desired target image. 

The three most common operating modes that characterize SAR are stripmap, 

scan, and spotlight.  Figure 2.2 shows each of these modes.   
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a) Stripmap Mode 

 
 
 
 
 
 
 

b) Scan Mode 

 
 
 
 
 
 
 

c) Spotlight Mode 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 SAR Modes: A) Stripmap B) Scan C) Spotlight (From Ref. [4].) 
 

1. SAR Modes 

In stripmap mode, Figure 2.2a, a fixed side-looking antenna is attached to the 

aircraft.  This antenna has a real, physical aperture.  The radar beam uniformly 

illuminates a strip of ground as the aircraft traverses the target.  The velocity of the 

aircraft combined with the pulse repetition time determine the integration time. In this 

configuration, points closer to the radar require a shorter integration length than points 

farther away from the radar.  As a result, the maximum resolution in cross-range for strip-

map mode is in effect one-half of what a real aperture’s cross range would be.  Moreover, 

since the target dwell time, or time the target is within the radar beam, is relatively short, 

image resolution typically suffers. [4] 
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Scan mode is represented in Figure 2.2b.  Returned pulses are integrated while the 

target is scanned by the radar beam in cross-range.  Here, the resolution is limited by the 

rate at which the antenna scans the target in addition to the physical beamwidth of the 

pulse.  By scanning across a target while the aircraft moves past it, the synthetic antenna 

beam is effectively sharpened over traditional stripmap mode. 

The third operating mode, spotlight SAR, is illustrated in Figure 2.2c.  Here, the 

antenna beam stays focused over the target while the aircraft passes by at a specific 

azimuth angle. The cross-range resolution of spotlight mode is limited by the target dwell 

time and radar beamwidth.  This mode provides the sharpest resolution as the radar can 

take advantage of a fairly long target dwell time.  Typically, scan-mode will be used until 

a target is spotted at which point spotlight mode is switched on.  Spotlight mode will be 

the assumed mode for the remainder of this thesis as the target will already have been 

found.  The cross-range resolution for spotlight SAR is given as [2] 

1
2cr

λ
ψ

∆ ≈        2.8 

where ψ  is the integration angle. 

Current SAR and ISAR platforms also use what is known as focused radar beams.  

The difference between a focused and unfocused beam is that the focused beam takes into 

account the quadratic phase error produced by the motion of the radar past its target.  The 

movement of the aircraft platform away from the target is also generally taken into 

account when integrating return pulses.  By focusing the radar beam, the effective cross-

range resolution of the radar is increased.  According to Wehner [2], the half-power 

resolution for unfocused SAR in strip-map mode is 

0.5cr Rλ∆ ≈       2.9 

where the resolution degrades as the square of both range and wavelength.  In contrast, 

the half-power resolution of focused SAR is 

2c
Lr∆ ≈ .     2.10 

By focusing the aperture, the resolution becomes independent of the range to the target. 
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C. INVERSE SYNTHETIC APERTURE RADAR (ISAR) 

While SAR uses the motion of the radar platform to coherently integrate return 

energy from a generally land-based target, ISAR uses the motion of the target relative to 

an effectively fixed radar platform to integrate the return pulses and generate an image. 

This type of imaging works well for both ships and aircraft whose motion is typically 

somewhat constant, or repetitive.  Referring back to the spotlight mode of SAR, the 

cross-range resolution is dependant on the width of the radar beam in which the target 

remains.  ISAR is similar to spotlight mode where the target remains within the radar 

beam. However, it is not the width of the beam that matters, but the motion of the target 

and its dwell time within that beam.   

To get a better understanding, consider an aircraft operating in spotlight SAR 

mode traveling along a circular path around a target at an integration angle ψ  as in 

Figure 2.3a.  Now fix the radar and move the target as in Figure 2.3b. The greater the 

motion of the target, the better the resultant image will be.  

 

Moving 

Radar               Fixed Target 

 

 

a) SAR 

 

 

 

Fixed Radar           Rotating Target 

b) ISAR 

Figure 2.3 ISAR Radar Example (From Ref. [2].) 

 

ψ

ψ
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Similar to SAR, ISAR can use either a focused or unfocused beam as discussed 

previously.  The optimum unfocused integration angle according to Wehner [2] is 

1.2opt R
λψ = .     2.11 

The corresponding cross-range resolution is 

0.5cr Rλ∆ ≈ .    2.12 

For ISAR mode, focusing is accomplished by subtracting the two-way phase advance of 

subsequent scatters.  In general, the motion of the target is not known ahead of time, and 

thus focusing ISAR requires special processing during imaging to detect and correct for 

target rotational motion.  A focused ISAR has a half-power resolution of  

3| 0.44c dBr λ
ψ

∆ =     2.13 

and a Rayleigh resolution of 

0.5cr
λ
ψ

∆ = .     2.14 

 

1. Chirp-Pulse ISAR Imaging 

ISAR imaging is perhaps best understood as a series of range-Doppler profiles of 

the target being tracked.  The range dimension is simply along the line of sight from the 

radar to the target.  The Doppler dimension is based on integration of the return pulses 

from the rotation of the target.  A combined return pulse may be broken down into a 

number of subsequent range cells, each containing a cross-range Doppler profile of the 

target at that range.  Consider an integration time T  during which the target rotates 

through an angle ψ .  Assume there are n   samples processed in both phase and 

quadrature-phase for each of N  range profiles received during this time T .  For each 

range cell, the Doppler magnitude is proportional to the reflectivity of the scatterer.  This 

reflectivity is a product of both range and cross-range with the cross-range represented by 

an appropriate scaling factor based on the target’s angular motion.  According to Wehner 
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[2], the instantaneous Doppler-frequency shift of a single scatterer at a cross-range 

distance cr  and instantaneous velocity ω  toward the radar is 

2 c
D

rf ω
λ

=      2.15 

where ω  is the instantaneous velocity and cr  is the cross-range distance. 

Two scatterers in the same range cell, but different cross-range locations 

separated by a distance of crδ  will have a separation of frequencies equal to 

2
D cf rδ ωδ

λ
=      2.16 

 

which can be rearranged as 

2c Dr fλδ δ
ω

= .    2.17 

If an ISAR has a Doppler-frequency resolution of Df∆ , then the cross-range resolution is 

given by 

2c Dr fλ
ω

∆ = ∆      2.18 

where Df∆ is related to the coherent integration time by Df∆ = 1/T.  Therefore, the cross-

range resolution can be reduced to 

1
2cr

λ
ψ

∆ = .     2.19 

In order to resolve the target in slant-range, or along the line of sight of the radar, 

wideband chirp-pulse waveforms are typically used.  The Rayleigh resolution for the 

chirp-pulse is 

2s
cr∆ =
∆

     2.20 
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where ∆  is the pulse bandwidth.  The pulse falls within a slant-range window represented 

by 

2s s
cw η=
∆

      2.21 

where sη  is the number of complex samples delayed by t∆ .  The corresponding phase I  

and quadrature phase Q  sampling rate must be at least D  complex samples per second to 

meet Nyquist requirements for complete image formation.  The slant-range integration 

length for a pulse duration 1T , which does not affect the sampling window, is 1 2cT , or 

the same as for SAR using chirp-pulse waveforms. The pulse repetition frequency needed 

for resolving reflections at a cross-range window of cw  is  

21 cw
PRI

ω
λ

≥       2.22 

where PRI is the Pulse Repetition Interval and cw  is the cross-range window.  This leads 

to the next expression which gives the minimum number of range-profiles needed for a 

given cross-range window, 

2 .cw PRIN ω
λ

≥      2.23 

The cross-range window itself can be represented with one profile for each of N  chirp 

pulses as  

2cw N λ
ψ

= .      2.24 

To form a two-dimensional range-Doppler image of the target, the received pulses 

are typically down-converted to baseband, passed through a pulse-compression filter, and 

sampled in I  and Q . The result is a time history matrix of the target’s range-profile, 

separated into range bins as in Figure 2.4.  The image can be produced by performing a 

Fourier Transform on the resulting time-history matrix by column. [2] The image is 

simply the magnitude of this matrix.  An example of a two dimensional range-Doppler 
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image is shown in Figure 2.1. It is important to note that the range elements are not true 

representations of distance, but equally spaced samples in the slant-range dimension.   
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Figure 2.4 Image Processing of Chirp-Pulse Data (From Ref. [2].) 
 

Symbol Definition 

,( / )l kA φ  Amplitude and phase in l-th range cell 
of the synthetic range profile from the k-th 

chirp pulse 
,l jD  Magnitude in l-th range cell and j-th 

Doppler cell of range-Doppler image 

T  Image Frame Time ( )T NPRI=  



19 

2. AN/APS-137 

The AN/APS-137 represents the U.S. Navy’s premiere maritime surveillance 

radar system capable of operating in both the SAR and ISAR mode at full range.  It is an 

upgraded version of the AN/APS-116 radar, the main difference being the addition of 

ISAR capability.  This radar is typically installed on P3 fixed-wing aircraft for anti-

surface warfare purposes.  The AN/APS-137 provides long-range ship classification and 

identification friend-or-foe capability through a parabolic roll and pitch stabilized 

antenna.  At its core is a Receiver/Exciter/Synchronizer Processor (RESP) that can 

operate in both strip-map and spotlight modes.  Among its more important tactical uses 

are periscope detection, surface surveillance and navigation.  The AN/APS-137 has been 

actively deployed since 1998 to both U.S. and allied forces.  Unclassified specifications 

for the AN/APS-137 are shown in Table 2.1 and Table 2.2 below.  The contractor for the 

radar is Raytheon Company in McKinney, Texas. [5] 

 

Specification    SAR    ISAR 

Frequency    9.3-10.1 GHz   9.5-10 GHz  

Average Power   350 W     230-500 W 

Pulse-Width    12 sµ      10 sµ   

Pulse-Width Compression  variable    6 or 13 ns 

PRF     resolution dependant  500, 1000 Hz 

Resolution    3, 9, 30 m    0.9, 1.8 m  

Azimuth Coverage     360 degrees 

Receiver Sensitivity     92 dBm 

Receiver Noise     3.5 dB 

 
Table 2.1 AN/APS-137 Specifications(From Ref. [5].) 
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Target Radar Cross-sections(m2) Platform Altitude(m) Range(km) 

1     305    45 

5     305    72* 

10     305    72* 

200     1524    161* 

1000     3962    213 

10000     6401    330* 

*radar horizon limited 

Table 2.2 AN/APS-137 Specifications (From Ref. [5].) 
 
 

3. AN/APS-147  

The AN/APS-147 is the U.S. military’s next generation of maritime surveillance 

radar.  Similar to the AN/APS-137, it provides target classification, identification friend-

or-foe (IFF), SAR and ISAR modes.  However, advanced processing capability allows 

the AN/APS-147 to operate at substantially lower power levels than the AN/APS-137.  

Lower peak power waveforms combined with frequency agility mean a significantly 

lower probability of intercept by hostile forces when scanning medium to long-range 

targets.  The AN/APS-147 is currently being integrated and tested aboard SH-60 

helicopters.  The full range of radar modes include SAR/ISAR imaging, periscope 

detection, long-range surveillance, weather detection and avoidance, all-weather 

navigation, and short-range search and rescue.  Its increased resolution capability 

combined with its decreased power consumption make it an ideal choice for deployment 

in littoral situations.  Detailed unclassified specifications for the AN/APS-147 are not 

available at this time.  The contractor for the radar is Telephonics Corporation in 

Farmingdale, New York. [5] 
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D. SUMMARY 

The equations developed through this chapter provide a general overview of high-

resolution radar principles including antenna aperture, both real and synthetic, slant-range 

and cross-range dimensions, and their relation to SAR and ISAR operating modes.  The 

ability to create a 2D range-Doppler image from ISAR return pulses forms the basis for 

this thesis, and the following development in Chapter III, relating to the Digital Image 

Synthesizer (DIS) integrated circuit chip designed to create false 2D ISAR return signals.   
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III. DIGITAL IMAGE SYNTHESIZER (DIS) 

This chapter presents an overview of the Digital Image Synthesizer (DIS) design 

and the principles behind it. Emphasis is placed on the hardware implementation of the 

design, and on the overall process from intercepted chirp-pulse signal to the creation of 

an output waveform.  Associated with the DIS is a MATLAB model created as part of the 

NPS Thesis of Fernando Le Dantec [1].  This software model works to validate the theory 

behind the DIS, as well as to provide a foundation for current research into 3D ISAR.   

 

A. DIS OVERVIEW 

Current wideband radar systems such as the AN/APS137 provide ISAR imaging 

techniques capable of identifying and thus classifying specific target types.  In order to 

deceive such a radar, a coherent sequence of reflections, with proper delay, phase, and 

amplitude must be emulated.  A radar pulse reflects off of many surfaces of a ship and at 

many different ranges to the ISAR platform.  Each of these reflections must be taken into 

account when the false return is generated.  The DIS is capable of digitally generating the 

necessary pulse-to-pulse phase coherence for all necessary reflective returns for nearly 

any target ship, up to the size of an aircraft carrier. To understand how, consider Figure 

3.1. 
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Figure 3.1 Digital Image Synthesizer Block Diagram (From Ref [6].) 

 

Following the development in [6], an incoming wideband chirp-pulse radar signal 

is intercepted, down-converted to baseband frequency, and stored in Digital RF Memory 

(DRFM).  The complex envelope of the intercepted chirp-pulse can be represented as   

22 ( / 2 )( ) rect dj f t tts t e π τ

τ
+∆ =  

 
    3.1 

11
2

rect
10
2

t
t

t
τ

τ
τ

 <  =  
   >



    3.2 

( )st m f nPRI= +      3.3 

where 
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τ  is the pulse width in seconds, 

df  is the Doppler frequency between ISAR and receiving DRFM, 

m  is the sample number within chirp pulse of width ,τ  

sf  is the sampling frequency, must be greater than ∆ , 

n   is the pulse number index from 0 to 1pN − , and 

pN is the number of intercepted pulses stored in DRFM. 

Equation 3.3 for t  accounts for the pN  pulses stored in the DRFM.  Combining 

Equations 3.1 and 3.3, and assuming that the PRI  is constant for all pN  pulses, the 

phase samples from the incoming pulse can be represented by  

2

2

( , ) 2 ( ) ( ) .o d s sm n f m f nPRI m f nPRI
π

πφ π
τ
∆= + + +    3.5 

These phase samples are further converted to integer values with pk bit precision by 

2( , ) ( , )
2 po km n m n πφ φ =   

     3.6 

where x    is the largest integer value less than or equal to x .  From this point, each 

pulse must be modulated in both amplitude and phase to match the desired false target, 

sent through a final summation adder, up-converted via a digital to analog converter and 

broadcast back to the victim radar.  The strength of the false-return signal must be great 

enough to overcome the real-return signal but not so great as to overpower the radar 

system and act as a jamming device.   

The DIS represents a custom integrated circuit chip that takes the down-converted 

samples, modulates them in amplitude and phase, and sums the digital signal to be up-

converted.  The remainder of this chapter focuses only on the DIS components and not 

upon the conversion steps before or after the signal is processed. 

While the cross-range resolution of ISAR depends on the coherent return of 

subsequent pulses, the slant-range resolution depends on the number of range elements, 
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or bins, of which the return signal is composed.  Similarly, the slant-range resolution of 

the DIS is also dependant on the number of range bins used to generate the false target.  

The current design includes 512 range bins on a single chip, each of which independently 

performs the modulation steps mentioned above on the incoming waveform.  In order to 

emulate even larger targets, multiple DIS chips may be cascaded in parallel to achieve the 

necessary resolution. 

As previously stated, the process in each range bin begins after sampling of the 

intercepted chirp-pulse is finished.  Figure 3.2 describes the process by which the 

sampled pulse is modulated in both amplitude and phase, as well as the general layout of 

a single range-bin processor.  The block diagram represents a four-stage pipelined 

process where the necessary gain and phase-modulation coefficients are obtained from 

pre-programmed off-chip memory. The extraction of these coefficients from real ISAR 

return signals for a given ship type is discussed in subsequent chapters.   

Referring back to Figure 3.2, each range-bin modulator contains a phase adder, a 

look up table, a gain block, and a summation adder.  Each of these components will now 

be discussed in further detail.  
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Figure 3.2 Range-Bin Architecture (From Ref. [7].) 

 

The phase rotation is represented by a 4-bit unsigned number and as such is stored 

in 4-bit phase-rotation registers.  By adding the phase coefficient to the current incoming 

pulse, the resulting phase is rotated by an amount equal to ( , )inc r nφ  to provide a phase-

adder output of [6] 
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ˆ( , , ) ( , ) ( , )incr m n m n r nφ φ φ= +      3.7 

where r  is the range-bin index.  For each pulse-repetition interval (PRI), the phase can be 

rotated by a different coefficient.  This allows for more realistic Doppler shifts within 

each range bin, as well as the ability to synthesize multiple targets at a time.  Notice that, 

from Figure 3.2, both the phase and gain registers are double buffered to maintain high-

speed throughput without switching delays.   

At the output of the phase adder, the -bitpk  phase values are used by the lookup 

table to index a set of sine and cosine values in order to achieve the correct I and Q  

conversion for each pulse.  The output of the lookup table is represented by 

( ( , ) ( , ))( , , ) incj m n r nL r m n e φ φ+=      3.8 

where ( , )m nφ  is the phase sample indexed by the -thm sample and -thn pulse and 

( , )inc r nφ  is the phase increment indexed by the -thr range bin and -thn pulse.  From the 

lookup table, the new signal, modulated in phase, is modulated in amplitude by a power-

of-two gain-shifter block, represented by 

( ( , ) ( , ))( , )( , , ) 2 incj m n r ng r nS r m n e φ φ+=      3.9 

where ( , )g r n  is the number of bits by which to left shift I  and Q . 

A parallel array of multiplexers implements the gain shifter as shown in Figure 

3.3.  The gain shifter allows for modulation in both I  and Q  by up to 11 discrete power-

of-two levels.  In order to accurately recreate the necessary gain modulation, the 

coefficients must be normalized to fit within these discreet levels. 
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Figure 3.3 Gain Multiplier(After Ref. [7].) 

 

In order to generate the output pulse, the modulated samples in each range bin 

must be summed with the previous range bin, as shown in Figure 3.4.  The summation 

adder is implemented by a 16-bit two’s-complement ripple-carry adder where the partial 

input of the current addition stage comes from the summation output of the previous 

range-bin stage.  In general, up to 32 range bins may be summed without the possibility 

of an overflow due to the fact that both positive and negative values are being summed. 

However, cascading 512 or more range bins is needed for proper false target generation 

of large ships such as aircraft carriers.  The next chapter deals with the underlying issues 

behind the possibility of having an adder overflow, the consequences of such an action 

happening, as well as methods to deal with this overflow.     
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Figure 3.4 16 Bit Summation Adder (From Ref. [1].) 
 

The output pulses from the DIS, created through the superposition of rN  copies 

of the pulse are 

1
( ( , ) ( , ))( , )

0
( , ) 2 .

r
inc

N
j m r n r ng r n

r
I m n e φ φ

−
− +

=

= ∑    3.10 

Each of these copies is modulated in gain by ( , )2g r n  and in phase by ( , )inc r nφ .  Moreover, 

each pulse is appropriately delayed via the summation adder.  These pulses are sub-

sequently processed through a digital-to-analogue converter (DAC) and up-converted 

onto the carrier frequency for retransmission.  The resultant signal is received by the 

initial ISAR platform, which processes it to form a range-Doppler image of the false 
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target.  Convinced that the detected vessel is not a threat, the surveillance aircraft 

continues on. 

 
B. MATLAB SIMULATION 

Verification of the DIS and overall chip behavior is done through a mathematical 

model implemented in MATLAB by a previous NPS student, Fernando Le Dantec [1]. 

Within his thesis is a detailed explanation of the code behind the DIS as well as a copy of 

the entire code base.  Since this thesis builds upon his research and code-base, a short 

summary of his model is presented here.  For an exhaustive analysis, please see the 

reference to the original thesis.   

The MATLAB simulation loads a sample target’s Doppler template through 

execution of the file extract_v5.m.  The template is as shown in Figure 3.5 and contains 

the main target scatterers arranged by range, r , and Doppler shift, ( , )f r d  where d  

represents the cross-range location in terms of Doppler resolution.   
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Figure 3.5 Range-Doppler Template (From Ref. [1].) 
 

By loading different templates into the simulation, targets of sizes ranging from 2 to 512 

range bins may be produced.  Each version of the sample target is simply scaled from the 

previous version and represents the same perspective of the same ship.  Chapter IV 

describes how the simulation can be used to compute false target images based upon the 

acquisition of realistic sample data.  Regardless of the input data or coefficients, however, 

the process is the same.   
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Given a sample image, the simulator will first create a matrix of Doppler 

frequency values with a common magnitude.  Their phase is determined based upon the 

Doppler shift contained within the frequency matrix.  The general complex representation 

of the scattered return from the target is [6] 

2 ( , )( , , ) ( , ) j f r d tT r d t A r d e π−=      3.11 

where 

d  is the Doppler scatterer index, 

( , )f r d  is the range-Doppler frequency configuration, and 

( , )A r d  is the scattering amplitude. 

A separate two-dimensional matrix, targetSum, [1] is created and represents a 

collection of range profiles for each of pN  pulses and is equivalent to the range profiles 

formed after the ISAR range compression output. From this matrix, the magnitudes of the 

range profiles are normalized into eleven levels corresponding to the binary gain shifter 

described above.  These eleven levels are within the range of 20 to 210, each left shift 

representing multiplication by powers of two. 

To extract the necessary phase coefficients, the simulation uses MATLAB’s 

angle() function on the targetSum array and normalizes the result from 0 to 31.99.  For 

each scatterer, a phase increment is calculated with respect to the scatterer of the previous 

Doppler location, starting at zero for the first location. The relative phase increments are 

stored in their own matrix as phase coefficients.  [1] 

Once the coefficients for magnitude and phase are obtained, the program 

simulates ISAR range compression using a cross-correlation algorithm and Fourier 

transforms.  For each range bin, the sample chirp-pulse signal is modulated by the stored 

phase and magnitude coefficients, then given the proper delay and summed with the 

previous range bin.  After range compression, azimuth compression is simulated to create 

a final matrix whose intensity values represent the target range-Doppler image as shown 

in Figure 2.1. The whole process is diagramed in Figure 3.6.  Output images are 
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compared against the infinite resolution case in order to determine the correlation 

between real ISAR images and what is output by the DIS.    

  

 

 

 

 

 

 

 

 

 

Figure 3.6 Flow Diagram of simhwchk_v5.m (From Ref. [1].) 

 

D. SUMMARY 

In this chapter, the mathematical basis underlying the DIS is developed along 

with a general introduction to its hardware implementation.  Signal processing begins 

with the intercepted chirp-pulse, and continues through down-conversion, amplitude and 

phase modulation, coherent range-bin summation, and ultimately up-conversion.  At the 

most basic level of understanding, the DIS recreates what should be a realistic copy of an 

ISAR return signature based on real-target coefficients.  However, due to both the digital 

nature of the DIS as well as the necessary tradeoffs between hardware efficiency and 

signal accuracy, what is instead outputted is a high-level approximation of the desired 

return signature.  Design choices that play a significant role in governing both efficiency 

and accuracy include implementation of the gain multiplier and final summation adder.  

Chapter IV explores the specific relationship between these hardware components and 

the resulting output image quality in light of realistic operating conditions. 
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IV. ADDER OVERFLOW ANALYSIS 

This chapter presents a detailed discussion of the hardware implemented gain 

shifter and final summation adder of the DIS.  Due to implementation considerations 

within these blocks, the possibility exists, when simulating false images of large targets, 

for an overflow to occur in the final summation adder.  This overflow is detrimental to 

the overall image quality and thus may become a major issue when validating the 

accuracy of the DIS chip.  Moreover, the overflow may present characteristics of images 

that, when exploited, might be used to determine that the target is false, thus invalidating 

the value of the entire DIS system.  Examples of the overflow are shown for different size 

images, culminating with a 512-range bin target.  In response to this problem, three ways 

to deal with the overflow are presented along with the relative strengths and weaknesses 

of each design. The first method involves setting a flag when the overflow occurs but 

allowing the image to be degraded. The second method includes capping each range-bin 

summation at a maximum value instead of allowing the overflow to wrap around.  The 

third method uses a system whereby the maximum allowed gain shift is reduced from 210 

down to 29 or even 28 to reduce the overall gain of the waveform.  It will be shown that 

this last method provides the most effective, and least costly, method as far as system 

redesign is concerned. 

 

A. POWER-OF-TWO GAIN SHIFTER 

After the incoming chirp-pulse is down-converted to baseband frequency and 

sampled in phase I  and quadrature phase Q , each component is rotated by phase 

coefficients and processed through a lookup table to be in the form [6] 

( ( , ) ( , ))( , , ) incj m n r nL r m n e φ φ+= .      4.1 

It is at this point that, in each range bin, the I  and Q  components all have a uniform, 

constant magnitude.  In order to correlate their magnitude with that of the real return 

pulse of the false target, Equation 4.1 must be multiplied by the correct amplitude 

coefficient. There are many ways to implement the required gain multiplier.  A true 
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arithmetic multiplier would require a significant number of transistors, incur detrimental 

delays, and occupy a large portion of real estate on the fabricated chip.  With two gain 

multipliers per range bin, one for I  and one for Q , and 512 range bins, it becomes 

impractical to use a full-scale array multiplier.  Instead, the gain-modulation coefficients 

are normalized to eleven discrete levels representing gain multiplication of 20 to 210, or 1 

to 1024 times the original magnitude.  Using a gain shifter instead of a full arithmetic 

multiplier is not an issue since a dynamic range of approximately 60 dB is still realized 

using four bits to control the eleven power-of-two shifts.  Moreover, depending on how 

the original magnitudes are normalized to these eleven levels, extra precision can be 

allotted to the areas of the signal that require it.  One non-linear example of a gain-

quantization scheme is shown in Table 4.1. [1] The currently implemented 11-bit gain 

shifter is shown in Figure 3.3. 

 
Magnitude  
Ranges 

Number of 
Shifts g(r,n) 

Effective Gain 
2g(r,n) 

0.8 to 1.0 10 1024 
0.4 to 0.8 9 512 
0.2 to 0.4 8 256 
0.1 to 0.2 7 128 
0.05 to 0.1 6 64 
0.025 to 0.05 5 32 
0.0125 to 0.025 4 16 
0.0063 to 0.0125 3 8 
0.0032 to 0.0063 2 4 
0.0016 to 0.0032 1 2 
0 to 0.0016 0 1 

 
Table 4.1 Gain Quantization (From Ref. [1].) 

 

Regardless of how the gain multiplier is implemented, the larger the allowed 

multiplication factor is, the larger the final summation is at the output of each range bin 

and thus the greater the chance for an overflow.  Notice that modulating the phase of the 

false target signal does not present the possibility of an overflow since the addition of 

phase coefficients serves only to rotate the phase through a maximum angle of 360 

degrees.   
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B. 16-BIT SUMMATION ADDER 

The output of the gain shifter for each pulse in each range bin is a 13-bit two’s 

complement number.  One sign bit, ten integer bits, and two decimal bits form binary 

values ranging from –1024 to 1023.75.  To create the final return signal, the scattering 

elements from each range bin must be summed.  This is accomplished through a 16-bit 

two’s complement ripple-carry adder. Each range bin has one adder for each of its 

component I  and Q  parts.  Starting at the first range bin, one input to the adder comes 

from the sign-extended 13-bit result of the binary gain shifter.  The other input comes 

from the 16-bit sum of the previous range bin. For the first range bin, the secondary input 

is zero. [7] With each subsequent clock pulse, the final summation proceeds to the next 

range bin where it is added to the output of that stage’s gain shifter.  By rippling through 

the range bins on a clock-by-clock basis, the proper delay is inserted for scattering 

elements at varying ranges.  When the final summation is completed, the resultant signal 

is ready for the digital-to-analog converter (DAC) and transmission back to the victim 

ISAR.   

In two’s complement arithmetic involving k  bits, the maximum signed range is 

from 12k −−  to 12 1k − − .  For 1 sign bit, 13 integer bits, and 2 decimal bits, this range 

translates to –8192 to 8191.75.  When an overflow occurs, the result is a spill-over into 

the sign bit of the two’s complement number, thus changing a positive number to 

negative, or a negative number to positive.  When the overflow occurs early in the ripple-

carry adder, the error will propagate through every stage and every range bin where it is 

compounded by future additions.  The next section shows the effects of this overflow on 

image quality. 

 

C. OVERFLOW SIMULATION RESULTS 

The MATLAB simulation of the DIS was run for identical sample target images, 

employing both 32 range bins and 512 range bins.  A 512-range bin infinite-resolution 

test case was also run to produce what an ideal image looks like. Intermediate steps of 64, 

128, and 256 range bins were not considered for three reasons.  First, overflow problems 

do not present themselves unless significantly high resolutions are used.  Second, 
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simulation times for computing individual stages on a software-implemented design in 

MATLAB are very time-consuming.  For showing results from a situation that does not 

involve overflow, 32 range bins provides an acceptable, yet fast solution.  Finally, the 

majority of false targets occurring in real-world tactical operations must be at least 512 

range bins in size to provide realistic return data.  Since each DIS chip has up to 512 

range bins, if the problem can be solved within one chip, then cascading multiple DIS 

chips for even larger targets will not be an issue since each chip uses its own summation 

adders.  Furthermore, the results from each chip can be externally summed and 

modulated if required before being up-converted.   

 

1. 32 Range bins 

The first set of figures represents simulation outputs at various points along the 

DIS process from intercepting the wideband chirp-pulse to displaying the 2D range-

Doppler image of the signal outputted by the DIS.  The intercepted ISAR chirp-pulse, as 

represented by Equation 3.1 is shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Intercepted ISAR Chirp as Generated by DRFM. 
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Figure 4.2 shows the range-Doppler profile of the 32-range bin target that is processed by 

the DIS simulation.  The phase and magnitude coefficients will be extracted from this 

image and applied to the above chirp-pulse to create the normalized output waveform. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 32 Range bin False Target Profile – 128 Pulses. 

 

For the 32-range bin test case, the original software parameters are retained.  The DIS 

integrates over 128 coherent pulses to form the output image.  The extracted gain 

coefficients are quantized into 11 levels as shown in Figure 4.3. During the final 

summation, no overflows are recorded and the system produces the waveform shown in 

Figure 4.4. 
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Figure 4.3 Gain Quantization Scheme for 32 Range bins. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 DIS Output Chirp Pulse for 32 Range bins. 
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The resulting output chirp-pulse shows a neatly modulated waveform as expected.  

However, keep in mind that this waveform only represents a target extent of 32 range 

bins.  When the data is once again sampled and processed into a 2D range-Doppler 

image, as shown in Figure 4.5, it is very evident that the resolution is not high enough to 

depict an accurate ISAR image that is capable of fooling an AN/APS-137 operator.  A 

512-range bin target shows much higher resolution and image detail, provided the adder 

overflow is kept in check. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Range-Doppler Image for 32 Range bins. 
 

2. 512 Range bins 

The same simulation was run for an identical target profile, yet with a range 

resolution of 512 bins.  Figures 4.6 and 4.7 show, respectively, the corresponding range-

Doppler profile as well as the quantized magnitude coefficients as extracted from this 

profile. 
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Figure 4.6 512 Range bin False Target Profile – 128 Pulses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Gain Quantization Scheme for 512 Range bins. 
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Once again, the full 11-bit gain quantization scale is used as in the 32-range bin case.  For 

all of the simulations, the same intercepted chirp-pulse as shown in Figure 4.1 is used as 

well.  This time, however, the output waveform from the DIS is noticeably distorted as 

shown in Figure 4.9.  Figure 4.8 shows the output waveform for the infinite-resolution 

case as a comparison. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 DIS Output Chirp Pulse for 512 Range bins, Infinite Resolution. 
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Figure 4.9 DIS Output Chirp Pulse for 512 Range bins, Uncapped. 

 

Statistical measurements taken during the simulation show that an overflow in 

any one of the range bins occurred 25,774 times.  Although the adder can only handle a 

maximum value of –8192 to 8191.75, a peak absolute value of 9,936 is recorded.  

Average noise within the waveform is calculated to be 0.0036.  Moreover, the resulting 

2D range-Doppler image, shown in Figure 4.11, is calculated to have a correlation 

coefficient of 0.8958 between the current image and the infinite-resolution image, shown 

in Figure 4.10.  Nearly 11% of the resolution is lost simply due to overflow in the final 

summation adder of the DIS. 
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Figure 4.10 2D Range-Doppler Image for 512 Range bins, Infinite Resolution. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11 2D Range-Doppler Image for 512 Range bins, Uncapped. 
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D. DEALING WITH OVERFLOW 

Three methods are examined to deal with the overflow.  When examining them, 

the extent of image degradation is weighed against the cost of both the possibility of 

system redesign and the required DIS processing speed.  The first method is stated simply 

to be complete, but is not recommended as a proper solution as it simply detects the 

problem and ignores it. 

 

1. Signal Overflows with a Flag 

Whenever an overflow exists, it can be very simply detected by the carry-out of 

the last stage of each addition.  Upon detecting an overflow, the system can set a 

hardware flag and notify the user of the event at which point it is up to the operator to 

determine the extent of signal degradation and if the system must be stopped.  Beyond 

not dealing with the issue, this approach allows for a system to be deployed with such a 

characteristic that can be exploited and used against the DIS to, in effect, invalidate all 

efforts at electronic deception.   

 

2. Cap Overflows at a Maximum Value 

The second approach still sets a flag when an overflow occurs, but this flag does 

not indicate any problems that would mean exploitation of system weakness.  Instead, 

when an overflow is detected within any individual summation for each range bin and 

each pulse, the value of the overflow is discarded.  The sum is then set at the maximum 

value allowed, either negative 8192 or positive 8191.75.  This prevents the overflow from 

influencing the sign-bit of the adder, thereby placing a ceiling on image resolution.  

Figure 4.12 shows the output waveform for this approach within the MATLAB 

simulation.  Figure 4.13 shows the resulting image produced from that waveform. 
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Figure 4.12 DIS Output Chirp Pulse for 512 Range bins, Capped. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 2D Range-Doppler Image for 512 Range bins, Capped. 
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The average noise coefficient is calculated to be 0.00034238 with an image 

correlation factor of 0.9898.  After comparing the original overflow waveform with the 

capped case, it might be confusing to see that the amplitude is actually greater for the 

capped case.  Moreover it might seem that the amplitude reaches above the previously 

stated summation limit of 8192.  However, the amplitude shown is representative of the 

signal after it has been modulated and is not bound in amplitude by the range of the 

adder.  Moreover, the uncapped waveform is generally smaller due to the fact that when 

an overflow occurs, the signal does not achieve a maximum value as in the capped 

version, but instead wraps around to a negative value.  This is evident from the oscillation 

in the uncapped waveform around the 200 samples mark.  Table 4.2 compares the results 

of the uncapped and capped simulations. 

 

Parameters Uncapped 512 Range bins Capped 512 Range bins 

Overflows 25774 Not Allowed 

Peak Absolute Value 9936 8192 

Noise Average 0.0036 0.00034238 

Correlation Coefficient 0.8958 0.9898 

 
Table 4.2 512 Range bin Statistical Comparison, Uncapped versus Capped. 

 

Although capping each addition at a maximum value does prevent the signal 

degradation shown earlier, it comes at a fairly high cost.  Extra hardware must be inserted 

after each stage of the adder, not only to detect the overflow, but also to reset the value of 

the sum to the maximum allowed positive or negative value.  Implementing this approach 

sets back the design process significantly and must be avoided if at all possible. 

 

3. Reduce the Gain 

The third approach allows the overflow to proceed as in the original case.  This 

time, however, the detection of an overflow is sent to the DIS controller.  The DIS 
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controller receives the error input and, in response, lowers the bit-resolution of the gain 

quantization matrix by one bit.  If an overflow continues, the controller may lower the 

quantization matrix by another bit.   

Immediately there is an opportunity to improve the process.  The DIS is run in 

real-time based upon stored coefficients.  Whether or not an overflow occurs depends 

upon the coefficients.  Therefore, the coefficients for each ship type may be analyzed 

ahead of time to determine the proper level of bit-quantization.  As shown in the 

following figures, it is not always necessary to remove all overflows to obtain a 

reasonable range-Doppler image resolution that will fool an ISAR equally as well as the 

infinite-resolution image.  There is thus a tradeoff between dynamic resolution and 

overall image quality that is best determined at the time of coefficient extraction.  

Although a predetermined quantization level should be sufficient to realize the DIS 

without noticeable image distortion, allowing the system controller to also dynamically 

modify quantization levels offers much greater flexibility on the battlefield as the DIS 

can adapt to the radar it aims to confuse.   

 
a. 10-Bit Gain Quantization 

Ten-bit gain quantization means that the power-of-two binary gain shifter 

is allowed to multiply the input pulses by a factor in the range from 20 to 29, or 1 to 512.  

This cuts the effective dynamic resolution in half; however it does not discard the top end 

of the gain spectrum.  Instead, all of the coefficients are still normalized, but to within 10 

bits of resolution instead of 11.  Figure 4.14 shows the gain-quantization map for the 

same 512-range bin false-target profile using 10 levels. 
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Figure 4.14 Gain Quantization Scheme for 512 Range bins, 10 Bits. 

 

The output signal is shown in Figure 4.15, followed by the 2D range-

Doppler image generated from the data.  Notice how the maximum amplitude of the 

output waveform is half that of the capped version.  According to simulation statistics, 

there are still 51 overflows with a peak value of 8373.  However, the noise average and 

image correlation values are 0.00034432 and 0.9898 respectively.  Although slightly 

more noise is present from lowering the gain, the image correlation is equal to that of the 

capped version to within 4 decimal places.  The output range-Doppler images also appear 

visually indistinguishable. 

 

 

 

 

 
 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 DIS Output Chirp Pulse for 512 range bins, 10 Bits. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16 2D Range-Doppler Image for 512 Range bins, 10 Bits. 
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b. 9 Bit Gain Quantization 

The experiment is taken one step further to explore the benefits of 

lowering the gain by one more bit to 9 total in an effort to remove all overflows.  With 9 

gain-quantization bits, modulated signals can be shifted to achieve multiplication in the 

range from 20 to 28 or 1 to 256.  Once again, the dynamic range of the overall image is 

reduced by one half with regard to the 10-bit quantization scheme.  Figure 4.17 shows the 

gain quantization map for the 9-bit case.  In Figure 4.18 the amplitude of the output 

waveform is one-fourth of the magnitude of both the capped and infinite resolution 

versions.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.17 Gain Quantization Scheme for 512 Range bins, 9 Bits. 
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Figure 4.18 DIS Output Chirp Pulse for 512 Range bins, 9 Bits. 
 

As expected, no overflows are recorded during the simulation. In fact, the 

peak summation value only reaches 4332, or roughly one-half of what is allowed.  The 

resulting range-Doppler image is shown in Figure 4.19.  The noise average is 0.00034315 

with a correlation coefficient of 0.9898.  Table 4.3 compares the results of the 10-bit and 

9-bit quantization schemes. 

 

Parameters 512 Range bins, 10 Bit 512 Range bins, 9 Bit 

Overflows 51 0 

Peak Absolute Value 8373 4332 

Noise Average 0.00034432 0.00034315 

Correlation Coefficient 0.9898 0.9898 

 
Table 4.3 512 Range bin Statistical Comparison, 10-Bit versus 9-Bit. 
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Figure 4.19 2D Range-Doppler Image for 512 Range bins, 9Bits. 
 

E. SUMMARY 

Based upon the current DIS design, generating false ISAR images for targets with 

a resolution of 512 range bins or greater presents a significant possibility of having an 

overflow occur in the final 16-bit summation adder.  An overflow generally causes the 

sign bit to be affected, thus negating the result and thereby harming the overall signal 

quality and, ultimately, the final image quality.  Such issues can be exploited by an 

enemy radar and thus pose a serious threat to the proper functioning of the DIS as a 

whole.  Two non-trivial solutions exist for this problem.   

The first solution is to detect when an overflow occurs in each range-bin 

summation, discard the overflow, and set the sum to the maximum allowed positive or 

negative value of the current adder stage.  This method works well in improving both 

signal and image quality. However, it requires a very costly system redesign to 

implement and is thus not a viable option.   

The second solution prevents overflows by reducing the bit-wise precision of the 

quantization of magnitude coefficients.  By normalizing the coefficients to within 10 bits 
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of precision as opposed to 11 bits, overflows are significantly reduced and overall signal 

and image quality is nearly equal to the infinite-resolution case.  Reducing the gain-

quantization precision to 9 bits eliminates all overflows for the sample target profile; 

however it significantly reduces the dynamic range of the target as well.  Therefore, the 

10-bit solution is preferred as it allows for the current DIS design with minimal changes.   

Lowering the gain modulation also serves to lower the total gain of the output 

signal and therefore also lowers the output power of the DIS.  As a solution, the signal 

power may be adjusted during the up-conversion stage to a proper level before being 

retransmitted.  Through careful analysis of the stored coefficients that run the DIS, the 

correct bit-quantization level can be determined ahead of time and with certainty to 

prevent overflow problems during battlefield operation. 

Figures 4.20, 4.21, and 4.22 provide a graphical comparison of all methods 

discussed in terms of adder peak value, average noise, and correlation with the infinite-

resolution image.  The 16-bit summation adder overflow analyzed in this chapter, if left 

unchecked, does present a significant problem.  However, these figures show that an 

expensive system redesign is not necessary as a more viable solution, which maintains 

image quality, is available through the adaptive adjustment of signal gain. 
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Figure 4.20 Peak Adder Value Comparison of all 512 Range bin Approaches. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.21 Average Noise Comparison of all 512 Range bin Approaches. 
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Figure 4.22 Correlation Coefficient Comparison of all 512 Range bin Approaches. 

 

At this point the reader should have a proper understanding of both the DIS 

architecture and the image creation process.  As mentioned above, the coefficients used 

to run the DIS are very important as they shape the entire set of output signal 

characteristics.  As such, it is important to run the current MATLAB DIS simulation with 

a wider selection of realistic target coefficients.  Chapter V examines this issue in more 

detail and provides an in-depth look at the coefficient extraction process. 
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V. 2D ISAR IMAGE CREATION AND COEFFICIENT 
EXTRACTION 

This chapter discusses the details behind forming a two-dimensional (2D) range-

Doppler image from complex scattering elements received through chirp-pulse wave-

forms.  Moreover, it is shown how to properly extract magnitude and phase coefficients 

from realistic simulation data.  These coefficients are used to run the DIS and create 

false-target images that should be identical to the images originally created from the 

complex scattering elements.  The resulting images form the basis for overlaying 2D 

range-Doppler profiles on a 3D target as discussed in Chapter VI.  Through research into 

the 3D aspects of the 2D images, weaknesses within the current DIS algorithms are 

examined.  Moreover, insight into practical implementations of 3D radar imaging is 

explored.  The ultimate goal is to run both the DIS software-based and hardware-based 

implementations at acceptable speeds using coefficients from real-target data.   

 

A. 2D RANGE-DOPPLER IMAGE CREATION 

The general approach for forming a 2D ISAR range-Doppler image from received 

chirp-pulse return signals is discussed in Chapter II.  Following the development in [6], 

the process begins with the receipt of return chirp-pulses of the form given in Equation 

3.1.  The return of each pulse represents individual complex scattering elements corres-

ponding to a specific range and cross-range Doppler shift.  pN  return pulses correspond 

to a target with rN  range bins.  Range compression is performed by correlating the re-

ceived signal with the reference function given by 

2( / )( )( , ) rect ,sj m f nPRIts m n e π τ

τ
∆ + =  

 
    5.1 

whose transfer function is given by 

1

0

1( , ) ( , ) .s

N
j T km

m
S k n S m n e

N
ω

−
−

=

= ∑     5.2 

The signal is transformed into the frequency domain by  
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1

0

1( , ) ( , ) s

N
j T km

m
I k n I m n e

N
ω

−
−

=

= ∑      5.3 

and then into complex range profile form by 

1
*

0

1( , ) ( , ) ( , ) .s

N
j T km

r
k

C m n I k n S k n e
N

ω
−

−

=

= ∑    5.4 

Subsequent return pulses, aligned along coherent range bins, form a time history 

of range-profiles as in Figure 2.4.  The rotational motion of the target over time, as in 

Figure 2.3b, creates a Doppler frequency shift in subsequent return pulses based on 

Equation 2.17 from which the cross-range resolution is given by  Equation 2.18.  Once in 

complex range-profile form, azimuth compression is completed based on 

1

0

1( , ) ( , ) ,
p

s

N
j T kn

r
n

C m k C m n e
N

ω
−

−

=

= ∑     5.5 

the absolute value of the result of which is the desired 2D range-Doppler image as shown 

in Figure 2.1. 

All realistic return data collected from an actual AN/APS-137 or similar simula-

tion must proceed through this basic process in order to create the necessary 2D range-

Doppler image.  However each set of data, especially from simulations, has its own 

unique set of parameters used in the creation of the data, which must also be considered 

when performing the pulse-compression and conversion steps.  Many of these parameters 

are actual AN/APS-137 tactical parameters and as such remain classified.  The ability to 

simulate the DIS based on real sets of ISAR data with the classified parameters provides 

increased validity to the simulation.   

In particular, some ISAR simulation data works in a sliding window fashion.  At 

each single processing step, pN  return pulses are integrated.  When the next pulse 

arrives, the window slides forward by one pulse to include the previous 1pN −  pulses in 

addition to the current pulse.  In this way, the created images represent a moving average 

of return data as opposed to a single slice in time.  By averaging over all pulses in this 
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manner, the effects of single-pulse fluctuations are minimized, providing an overall 

higher quality image.   

 

B. DIS COEFFICIENT EXTRACTION 

The true test of the DIS lies in its ability to produce a false-target image of equal 

resolution and quality as an equivalent real-target image.   The process by which the data 

is shaped into 2D range-Doppler images is described both above and in the previous 

chapters.  This section will discuss the method by which magnitude and phase 

coefficients are extracted from the same data.  Once extracted, these coefficients may be 

inserted in the DIS software model to verify correct false-target generation.   

Following the development in [6], the target return signal is composed of 

individual scattering elements for each of R  range bins according to Equation 3.11, 

reprinted below as 

2 ( , )( , , ) ( , ) ,j f r d PRIT r d n A r d e π−=     5.8 

where ( , )f r d  is the range-Doppler frequency shift of each scatterer and ( , )A r d  is the 

corresponding scattering amplitude.  For each range bin, r , the combined return signal is 

found by summing the complex scatterers along the azimuth dimension to achieve 

( )

1
( , ) ( , , ).

dN r

d
T r n T r d n

=

′ = ∑     5.9 

It is from this signal that the desired phase and gain coefficients are extracted for each 

range bin.  The phase of each range bin-pulse combination is found by dividing the 

imaginary portion of Equation 5.9 by the real portion, 

( ( , )) 2( , ) .
( ( , )) 2 pT k
T r nr n
T r n

πφ ′ ℑ=  ′ℜ 
    5.10 

The phases are quantized to -bitpk  resolution to support the hardware implementation of 

the DIS.  The phase from Equation 5.10 cannot be applied directly, however, as each 

target reflection must be represented as a phase increment on a pulse-to-pulse basis.  The 

first pulse, 0n = , is given the value 
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( ,0) ( ,0).inc Tr rφ φ′ =      5.11 

For subsequent pulses, their phase is subtracted from the previous pulse and then added 

to the previous increment as  

( , ) ( , 1) ( ( , 1) ( , )).inc inc T Tr n r n r n r nφ φ φ φ′ ′= − + − −    5.12 

Integer values for the phase coefficients that will feed the DIS for each pulse and range-

bin combination can then be obtained as  

( , ) ( , ) .inc incr n r nφ φ′=        5.13 

The gain coefficients are obtained from Equation 5.9 by taking the normalized 

magnitude of the combined return signal for each range bin and pulse combination as [1], 

( , )
( , ) .

max ( , )N

T r n
T r n

T r n
′

′ =
′

    5.14 

This method normalizes all of the gain coefficients linearly to a value between 0 and 1.  

As discussed in Chapter IV, the gain is quantized into a maximum of 11 unique levels.  

Selection of the quantization scheme determines the dynamic range of the corresponding 

ISAR image.  Proper selection is particularly important when considering the fact that the 

overall gain may need to be reduced to prevent an overflow in the final 16-bit summation 

adder as discussed in the previous chapter.  

 

C. SUMMARY 

The image processing steps discussed above are implemented in a corresponding 

MATLAB software model.  This model is based on the work of Fernando Le Dantec [1] 

and follows the process outline given in Figure 5.1.   
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Figure 5.1 Image Processing Block Diagram of MATLAB Model. 
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The software was created using sample data and as such may need to be moderately 

tweaked when applied to the processing of real ISAR data.  Specifically, depending on 

what form the date set is in, not all of the steps listed in Figure 5.1 may need to be 

completed.  The software model assumes that the data represents the complex return 

signal as would be received by the AN/APS-137 radar during operation.  It therefore 

requires range compression based on correlation with a reference function to create a 

complex range profile for each range bin.  The 2D range-Doppler image is then created 

through azimuth compression based on Equation 5.7.  Once the signal transformation is 

complete, gain and phase coefficients are extracted as previously described and 

subsequently run through the original DIS simulation from [1].   

Care is taken to provide a variable that allows the correct sliding window size to 

be set.  This ensures that correct moving-average signal integration is completed.  Either 

the images created directly from ISAR compression or indirectly through the DIS 

simulation can be used to run the 3D software overlay model presented in Chapter VII.  

Before the detailed discussion of this model is given, however, Chapter VI presents 

significant advances already made into the field of 3D ISAR. 
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VI. THREE DIMENSIONAL (3D) ISAR 

Two-dimensional (2D) ISAR images in range-Doppler format are widely used for 

long-range target detection and classification.  Working within the range-azimuth 

medium, there are several inherent shortcomings associated with traditional ISAR.  First, 

because the cross-range dimension is directly related to the rotation of the target, small 

rotational aspect angles present a challenge to the radar in determining the correct scale in 

the cross-range dimension without prior knowledge of target motion.  Moreover, the 

cross-range dimension of ISAR has no real scale, and thus does not present an accurate 

physical description of the target.  Finally, although a 2D ISAR image is a projection of a 

3D target, traditional processing methods cannot resolve the third dimension of target 

altitude. 

The benefits of being able to image a target at full range in three dimensions are 

several-fold.  The ability to create a precise 3D image provides the capability to target 

specific features of a potential threat for laser-guided munitions.  Within the littoral 

combat domain, harbors are filled with numerous ships, both of the commercial and 

warship variety.  The combined motion of multiple targets within a compact region 

makes it difficult to pick out a specific ship at full range, especially when smaller, fast 

moving boats are more likely to present the threat.  The AN/APS-147 is targeted 

specifically at this close-combat region and is thus an ideal candidate for 3D ISAR 

imaging.  Through comparison of 2D images and their corresponding 3D counterparts, it 

becomes possible to further classify and distinguish the more subtle components of 

current 2D images and thus provides enhanced capability to existing combat radar 

systems.   

This chapter presents a discussion of recent research attempts at synthesizing 3D 

ISAR images.  It begins with an overview of three-channel monopulse radar, followed by 

a detailed discussion of 3D interferometric ISAR imaging through the use of two receiver 

antennas at differing altitudes.  These methods are compared to a three-receiver ISAR 

system aimed at accurately solving for the cross-range scale of a target to be able to 

create three motion-compensated orthogonal radar views that, when combined, form a 3D 
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ISAR image.  Two of the three approaches rely upon backscattering phase information 

contained in current 2D ISAR images.  Therefore the chapter ends with a short discussion 

of modifications that might be made to the DIS to support 3D ISAR false-target imaging. 

 

A. 3D MONOPULSE RADAR 

The goal of three-channel monopulse radar is to resolve each range point cell in 

two orthogonal cross-range dimensions, specifically azimuth and elevation.  This is 

accomplished by using either chirp-pulse or stepped-frequency waveforms composed of 

one sum and two difference channels.  The difference channels represent differential 

error signals based on either azimuth versus range or elevation versus range calculations 

[2].  The basic diagram of the three-channel monopulse process is shown in Figure 6.1.  

The bandwidth of the radar signals is chosen to match the desired slant-range resolution 

of the system.  Traditional processing methods using the Discreet Fourier Transform 

convert each burst of echo signals within each channel to a corresponding synthetic range 

profile.  The error signals in each of the two difference channels are further normalized 

by range cell to produce bipolar cross-range position data.  The resulting image is 

displayed by plotting both azimuth and elevation profiles against the slant-range 

dimension.  Similar to traditional ISAR, Doppler frequency values are still obtained via 

the rotational motion of the target.   
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Figure 6.1 Monopulse Cross-Range Error Signals (From Ref. [2].) 

 
An example of the 3D display setup for this approach is shown in Figure 6.2. This 

method has been studied at the Naval Research Laboratory.  Two significant challenges 

posed include resolving multiple scattering centers within range cells as well as achieving 

high-resolution results at long range.  Early research has shown that the cross-range 

resolution decreases with increased target range.  The reason is that the difference-

channel signals are based on the cross-range angular positions of resolved target 

reflections and become smaller with increased range as signal voltage approaches the 

receiver noise level.  Achieving the maximum range possible typically requires use of 

stepped-frequency waveforms as they already include inherent pulse-to-pulse coherent 

integration.  In general, widespread research of 3D monopulse radar is limited as 

increasing attention is focused on more recent techniques including interferometric 

imaging [2]. 
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Figure 6.2 3D Monopulse Radar Image (From Ref. [2].) 
 

B. 3D INTERFEROMETRIC ISAR 

Interferometric imaging has long been in use for 3D terrain mapping using SAR.  

It reconstructs elevation based on imaging a given section of land at two different angles 

and correlating the resulting image.  3D interferometric ISAR relies on the same general 

approach and aims to correlate the return signals of two 2D ISAR images obtained at 

different altitudes to produce the third dimension.  This extra elevation data is extracted 

from the relative phase shift, or back scattering effects, between adjacent range cells of 

each 2D image.  

Three significant issues are present when considering the 3D interferometric 

ISAR approach.  First, uncontrolled phase scintillations, or target glint, make it difficult 

to correlate neighboring range cells across both images.  This problem is however 

lessened through the use of high-resolution wideband radar and is thus much less an issue 

with modern radar systems.   

Secondly, typical ISAR applications include imaging small targets, such as 

aircraft or ships, as opposed to wide stretches of land in the traditional SAR mode.  This 

forces the radar system to use more dedicated data processing power to extract the 

desired target from the surrounding region.  Once again, simply using a high enough 

resolution radar system can overcome the effects of this issue.   
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Thirdly, and most importantly, 3D interferometric imaging requires that the 

phases of corresponding range bins in each image be “unwrapped.”  Phase values can 

only be uniquely determined in a range of 360 degrees.  Typical phase measurements are 

made from π−  to π .  However, actual phase values, which also represent velocity, are 

not restricted to this range.  Values outside of this range are aliased back in, or basically 

“wrapped” around.  The challenge is to properly extract the entire phase shift from the 

received data.  This problem has been studied for over twenty years and yet is still the 

single largest stumbling block for interferometric processing.   

In order to completely unwrap a phase, it must both be in the range from π−  to π  

and the magnitude of the complex image at all points must be nonzero.  Through 

increased sampling, the first condition can be met.  However, unlike land-based terrain, 

typical ISAR images are composed of localized scattering centers, leading to 

discontinuities.  For testing purposes, this issue can be overcome by considering the 

target being imaged to be appropriately small enough that proper antenna placement 

assures reasonable signal returns based upon the Nyquist sampling theorem.  When 

scaled up to the size of an aircraft carrier, however, this issue needs considerably more 

attention to obtain valid results.   

Following the development in [8], the geometry setup for a bistatic 3D 

interferometric ISAR is shown in Figure 6.3. The target rotates about an axis 

perpendicular to the radar line of sight.  The two antennas are aligned such that their 

coordinates are 

0 0 1( sin( 2), cos( 2), )r tr r trR R hβ β− −     6.1 

and 

0 0 2( sin( 2), cos( 2), ),r tr r trR R hβ β− −     6.2 

where 

0rR  is the distance from the receiving antenna to the target origin, 

trβ  is the angle between the base of the transmit and receive antennas, 
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1h is the height of the first receiving antenna, also transmitting, and 

2h is the height of the second receiving antenna. 

Basically they are right above each other. The transmitting antenna is also a receiving 

antenna in this configuration.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 6.3 Interferometric ISAR Antenna Setup(After:[8]). 

 

A general 3D target scattering density function, ( , , )f x y z , is assumed and 

scatters can be measured over a rotating azimuth angle θ  in the range 

max max( 2) ( 2)θ θ θ− ≤ ≤ + .  Under this setup, the i-th scattering field can be measured by  
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6.4 

and 

2 2 2 2
0 0( , , , ) ( ) 2 sin cos ,

2 2
tr tr

ri r i rR x y z R x y z h R x yβ βθ θ θ    = + + + − − − − −        
 

6.5 

where 

0C  is a complex constant, 

D   is the target extent, and 

f   is the frequency in the range min maxf f f≤ ≤ . 

A 2D interferometric ISAR image can be computed by restricting the altitude to 0z =  

and solving the 2D version of Equation 6.3 as 

2

2 [ ( , ,0, ) ( , ,0, )]
( , ) ( , ) ,t rij R x y R x y

s zD
E f f x y e dxdy

π θ θ
λθ

− +
= ∫∫    6.6 

where ( , )zf x y  is an integrated version of ( , , )f x y z .  By solving for ( , )zf x y  in Equation 

6.6, we have 

2 2 [ ( , ,0, ) ( , ,0, )]

0 0

( , ) ( , ) .t rij R x y R x y

z sf x y E f e df d
π π θ θ

λθ θ
∞

+
= ∫ ∫    6.7 

This represents a coherently focused 2D scattering function at a given z  altitude plane. 

Applying the previously stated azimuth angle boundaries gives 

max max

min max

2 2 [ ( , ,0, ) ( , ,0, )]

2

ˆ ( , ) ( , ) .t ri
f

j R x y R x y

z s
f

f x y E f e df d
θ π θ θ

λ

θ

θ θ
+

+

−

= ∫ ∫   6.8 

Traditional 2D ISAR FFT-based approaches can then be used to project the resulting 

image into the 2D plane.  

The return of each antenna in the bistatic setup can thus generate a two-

dimensional image in the format just described.  It is important to note that during this 

whole process, the phase information at each point in the pixel array has not been altered.  
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In order to generate the proper continuously varying altitude information based on the 

phase shifts in each 2D image, it is necessary to accurately describe the phase difference 

between two images for a given pixel.  The general expression for this phase difference is 

given as 

1 2 1 2
2( , , , ) [ ( , , ,0) ( , , ,0)]r rx y R x y z R x y zπφ α α
λ

∆ = −    6.9 

where 

 1rR  is the distance between the target and first receiving antenna, 

2rR  is the distance between the target and second receiving antenna, and 

iα   is the depression angle of the i-th receiving antenna calculated as 

1

0

tan i
i

r

h
R

α −= .     6.10 

Through a Taylor expansion of riR , the phase difference can be expressed in the 

following equations: 

2
1 2 1 2 1 2 1 2

2( , , , , ) [ ( , ) ( , , , ) ( , , , )],x y z A z B x y z C x yπφ α α α α α α α α
λ

∆ = + +  6.11 

1 2 1 1 2
0

1( , ) ( , ),
2 r

A k
R

α α α α=      6.12 

1 2 2 1 2 1 2
0

sin cos
2 2( , , , ) (sin sin 1 ( , ) ,

tr tr

r

x y
B x y k

R

β β

α α α α α α
 − 

= − − 
 
 

  6.13 

2 2
0

1 2
1 2 0

2

3 1 2 2 1
0

( , , , ) sin cos
cos cos 2 2 2

sin cos
2 2         ( , ) (cos cos ),

2

r tr tr

r

tr tr

r

R x yC x y x y
R

x y
k

R

β βα α
α α

β β

α α α α

 += − − −


 +  
  + −





   6.14 

3 3
1 1 2 1 2( , ) cos cos ,k α α α α= −      6.15 
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2 2
2 1 2 2 1 2 1( , ) 1 sin sin sin sin ,k α α α α α α= − − −   6.16 

and 

2 2
3 1 2 1 1 2 2( , ) cos cos cos cos .k α α α α α α= + +    6.17 

By solving Equation 6.11, an expression for the altitude as a function of position x  and 

y  is obtained as 

2 4( , )
2

B B ACz x y
A

′− + −=     6.18 

and 

1 2( , , , )
2

x yC C φ α α λ
π

∆′ = − .    6.19 

Sample 2D ISAR images as well as the combined 3D image of a complex aircraft 

are shown in Figures 6.4 [9] and 6.5 [8] for research done at the Beijing Institute of 

Environmental Features.  The two figures are not images of the same aircraft, but instead 

were created on two separate occasions.  For the second experiment shown in Figure 6.5, 

wideband signals are fed from one antenna and received by two antennas at different 

altitudes.  Figure 6.5c shows that it is possible to correlate image scattering centers to 

physical geometry on the aircraft.  Moreover, a slight roll can be perceived in the aircraft.   

 

 

 

 

 

 

 

 

Figure 6.4 Interferometric 3F ISAR Images (From Ref. [9].) 
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a) Receiver 1 Image     b) Receiver 2 
Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 6.5 Interferometric 3D ISAR Images(From Ref. [8].) 
 

In general, interferometric ISAR imaging provides a fairly reliable method of 

extracting the third dimension of altitude from 2D ISAR images.  Two shortcomings of 

this approach include the phase unwrapping limitation previously mentioned as well as 

difficulty in resolving multiple scatterers within a single range cell [8]. 
 

C. 3D ISAR USING THREE RECEIVERS 

The three-receiver approach to 3D ISAR is similar in concept to the two receiver 

interferometric approach.  As Figure 6.6 shows, three antennas are aligned in the same 

plane, yet along orthogonal axes.  The transmitting antenna is at the origin, which is also 

(a) (b) 

(c) 
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a receiver, and one antenna is placed along both the y-axis and z-axis.  The slant-range 

and cross-range dimensions for each antenna should be identical.  Therefore the phase 

shift at the three orthogonal points relative to each other provides the extra information 

needed to extract an elevation from the traditional 2D ISAR signal returns.  The goal is to 

use the phase information to correctly judge the cross-range scale of each image plane.  

Once the real scale factor is known, an accurate correlation between the image planes is 

made. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.6 3 Receiver Radar Setup (From Ref. [10].) 

 

Following the development in [10], this approach uses a Linear Frequency 

Modulated signal given by 

22 ( )
2( ) ,c r r
kj f

r ss A e
π τ τ

τ
+

=     6.20 

from which a complex return signal is received as 

22 ( ) ( )
2

, ( , )
c r md r md

kj f t t

m P r r Ps t A e
π τ τ

τ
 − + −  =     6.21 

where 

sA  is the signal amplitude, 
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PA  is the amplitude of point scatterer P  at the -thm  receiver, 

cf  is the carrier frequency, 

rτ  is the fast time for the range dimension, 

rt  is the slow time for the cross range dimension, and 

mdt  is the fast time delay at slow time instant rt . 

The distance from the m-th receiver to a point scatterer P  at a time rt  can be related for 

each antenna as 

{ }1 22 2 2
1 ( ) [ ( ) ( )] [ ( )] [ ( )]P r P r xP r P yP r P zP rR t x R t R t y R t z R t= + ∆ + ∆ + + ∆ + + ∆     6.22 

{ }1 22 2 2
2 ( ) [ ( ) ( )] [ ( ) ] [ ( )]P r P r xP r P yP r P zP rR t x R t R t y R t b z R t= + ∆ + ∆ + + ∆ + + + ∆  6.23 

{ }1 22 2 2
3 ( ) [ ( ) ( )] [ ( )] [ ( ) ]P r P r xP r P yP r P zP rR t x R t R t y R t z R t b= + ∆ + ∆ + + ∆ + + ∆ +  6.24 

where  

, ,P P Px y z  is the location of point scatterer P  in each dimension, 

 ( )R t∆  is the distance change from target to receiver due to translational motion, 

 b  is the distance from receiver to transmitter, and 

, , ( )x y zPR t∆  are the shifts of scatterer P  from time instant 0 to time instant rt  in 

each dimension. 

In order to properly align all three return signals, both a range-alignment and an 

auto-focus process must be used. If the range resolution of the radar system is less than 

0.5 m, then the distances between receivers can be neglected and the same motion 

compensation functions used for all three antennas.  After alignment and focusing, the 

received signal of all scatterers in the -thn  range cell from the m-th receiver can be 

described by 

, ( )
,

_

( ) ,m P P rj j t
n m r P

P nth rangecell

S t A e eϕ φ− −

∈

= ∑     6.25 
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and 

4 ( ( ) ( ) ( )( ) P xP r r xP r
P r

P

x R t R t R tt
R

πφ
λ

∆ + ∆ ∆=    6.26 

where ,m Pje ϕ−  contains the position information of the scatterer that will be resolved in 

three-space and 2 2 2
P P P PR x y z= + + .  Expanding the terms ( )R t∆ and ( )xPR t∆ leads to the 

Doppler frequency of the -thP  scatterer to each m-th receiver, 

, 1 2
( )( ) ( ) ( ),P r

m P r r r
d tD t g t g t

dt
φ= = +     6.27 

with 

0 0
1

4 { [( ) ( ) ( ) ( )]}
( ) ,P P z r P y r

r
P

x y y w t z z w t
g t

R
π

λ
− + −

=    6.28 

and 

0 0
2

4 { ( )[( ) ( ) ( ) ( )] ( ) ( )}
( ) r P z r P y r r xP r

r
P

R t y y w t z z w t v t R t
g t

R
π

λ
∆ − + − + ∆

=  6.29 

where 

( )rv t  is the translational velocity of the target, 

, ( )y z rw t is the angular velocities of the target in the y and z directions, and 

0 0 0, ,x y z  is the reference scatterer location chosen as focus point of target. 

Further processing, including joint time-frequency analysis techniques, will eliminate the 

2 ( )rg t  term entirely [10] so that the resolved Doppler frequency of each scatterer for any 

given receiver is equal to Equation 6.28.   

Sample 2D images of the three receiver ISAR approach are given from two 

different image planes in Figures 6.7 and 6.8. The algorithms just described present the 

general form of the processing sequence needed to create each properly motion corrected 

and resolved 2D image that are combined to form a 3D image.  Depending on whether or 

not the target is maneuvering or somewhat stationary, application specific algorithms 
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have also been developed to increase the resultant image resolution and decrease the 

effects of multiple scatterers in a single range cell.  All of the images shown and 

algorithms behind them come from research done at the University of Delaware, Newark  

[10]. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 6.7 3 Receiver ISAR Image Plane (From Ref. [10].) 
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Figure 6.8 3 Receiver ISAR Image Plane (From Ref. [10].) 
 

D. 3D DIS MODIFICATIONS AND CONCLUSIONS 

3D ISAR is a fairly new concept in the world of high-resolution radar imaging.  

There are several approaches currently available, of which three have been briefly 

presented in this chapter.  All of the approaches have their individual strengths and 

weaknesses.  The motivation for creating a 3D ISAR image of a moving target is well 

founded in numerous military applications ranging from enhanced feature recognition on 

targets to simply providing more insight into current 2D ISAR imaging and feature 

correlation.  One problem that is encountered for all approaches thus far is the ability to 

resolve multiple scatterers within individual range cells.  Despite the sufficiently high 

radar resolution of current wideband systems, determining an elevation dimension from 

back-scattering effects in corresponding range cells becomes increasingly difficult at long 

range or for very large targets as seen in both the case of interferometric processing and 

the three-receiver image plane correlation approach.   Despite the shortcomings of these 

techniques, they have shown that it is possible to construct 3D ISAR from current 2D 

images taken at varying altitude levels and with multiple receivers.   

Since the full realization of a 3D ISAR is on the horizon at some point in the near 

future, it makes sense to take another look at the current 2D DIS system and suggest 
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ways that it might be modified to accommodate the generation of false 3D ISAR targets.  

It is important to again mention that two of the three 3D techniques discussed involve the 

use of multiple 2D images to form the 3D superposition of a target’s reflections.  Instead 

of rethinking the entire DIS process for a 3D ISAR countermeasure, one must only 

examine the current 2D images that are created and determine what, if any, backscat-

tering effects are already included in the phase information of these signals.  

It is therefore important to guide future research in finding the best way of 

combining multiple 2D ISAR images created by the DIS, based upon the techniques 

already described, to form a 3D ISAR superposition.  Modifications to the current 3D 

techniques might include various processing changes to accommodate the chirp-pulse 

format of current ISAR systems such as the AN/APS-137 and AN/APS-147.  In 

particular, hardware changes to the DIS may be limited to phase modulation changes.  

The extracted phase coefficients must be analyzed to ensure that they retain the necessary 

backscattering dimensions important to 3D reconstruction algorithms.  More importantly, 

the phase coefficients must take into account the fact that multiple receivers are going to 

analyze the new false-target image signal and thus coefficient creation should not be 

based simply on the results obtained from one receiver.  The next chapter presents current 

3D graphics software tools that aid in this process by providing fully immersive 

environments where current 2D ISAR images are overlaid on top of the geometric model 

of the corresponding ship being imaged. 

 

E. SUMMARY 

This chapter introduced the concepts of 3D ISAR as found in current research 

efforts.  In particular, 3D monopulse radar, 3D interferometric ISAR, and three-receiver 

ISAR were each presented along with their individual strengths and weaknesses.  Based 

on this research, modifications to the current DIS were suggested for future processing 

and creation of 3D ISAR return signals.  Chapter VII provides details on the visualization 

tools that were used to further explore the 3D ISAR concept. 
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VII. 3D GRAPHICS VISUALIZATION TOOLS 

The algorithms developed and discussed in the previous chapters for both 2D and 

3D ISAR provide a sound mathematical basis and motivation for continued work in the 

realm of 3D high-resolution radar.  These processing techniques and their corresponding 

waveform data present a wealth of knowledge about current radar imaging techniques as 

well as insight into the next generation of radar platforms for use in military operations.  

However, much of this valuable information is encrypted in the massive data sets 

themselves. Without adequate methods of visualizing these results, the full impact of 

their discovery is lost.  To be able calculate a 3D ISAR image, but not display it defeats 

the very purpose of its calculation.  This chapter presents currently available tools that 

have the ability to fully immerse the user in a three-dimensional virtual realm wherein 

data of all sorts may be fully visualized and analyzed for completeness.  The basis for this 

world is the Virtual Reality Modeling Language (VRML), harnessed for use within the 

open-source X3D-Edit software. An overview of this software is presented, followed by a 

discussion of 3D radar implementations within X3D-Edit.  The second part of the chapter 

deals explicitly with new tools created as an integral part of this thesis to provide Non-

Uniform Rational B-Spline (NURBS) support to the X3D and VRML environments.  

This fully functioning implementation within the X3D and Java domain adds the 

capability to develop smooth 3D curves and surfaces for use in both complex object 

creation and smooth animation paths such as those for flight trajectories.  Through the 

combination of X3D and NURBS, ISAR data can be fully visualized to aid in future 

developments of 3D radar imaging. 

 
A. X3D-EDIT AUTHORING TOOL 

Extensible 3D (X3D) is an open standard file format and programming platform 

for developing 3D web-based graphics.  Its roots lie in the VRML standard created in 

1997 which specifies how shapes, materials, objects, sound, and animation all come 

together to present a fully interactive 3D world, viewable on most standard internet 

browsers.  However, X3D is a fully developed specification approved by the International 
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Standards Organization (ISO) [11] that brings VRML concepts to an entirely new level.  

As its name suggests, it is built on Extensible Markup Language (XML) foundations and 

is thus fully extensible in nature, allowing it to reach into new avenues of web-based 

productivity.  X3D has thus far been extended to support everything from TCP/IP sockets 

across a network to communicating with MATLAB functions.  Aside from being a close 

relative of XML, X3D can also be extended through Java calls to provide the full 

capability of a true programming language to the user, thus opening up a realm of 

practically limitless extension possibilities. X3D-Edit, developed in part at NPS, provides 

an intuitive yet powerful means of creating virtual environments within the X3D 

specification.  Figure 7.1 illustrates the graphical user interface (GUI) for X3D-Edit. This 

interface is based upon the Xeena platform, developed by IBM [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 X3D-Edit GUI. 
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The underlying theme behind X3D-Edit is modular interconnectivity.  Each 

aspect of a virtual world from simple primitive shapes to lighting and sound is considered 

a node.  Each node will have various parameters describing how it behaves within the 

virtual world.  Moreover, nearly all nodes have at least one input field and output field 

through which they may communicate with either the browser or another node.  A simple 

scene might consist of a Shape node whose child is an IndexedFaceSet geometry node 

that provides the browser with a complete description of a 3D model such as an airplane.  

Also attached to the Shape node may be an Appearance node that also includes a Material 

node to describe the airplane’s surface color and texture.  Among the more complex 

nodes included in X3D, and thus also in X3D-Edit, are PositionInterpolator nodes, 

TimeSensor nodes, and Script nodes.  Through combining these nodes it is possible to 

quickly create interactive 3D content.  The Script node is especially important as it allows 

the user to add either Javascript or full Java programming to the scene.  Figure 7.2 shows 

a screen shot from a scene authored almost entirely in Java.  Since the Java is connected 

to X3D via a Script node, it is afforded the luxury of using X3D’s inherent geometry and 

graphical navigation support.  X3D simply serves as a display tool, or graphics engine, 

for high-level code to manipulate.  In the case of Figure 7.2, the high-level Java code 

creates a fully functioning 3D Tetris game. 
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Figure 7.2 Java 3D Tetris Game Within X3D-Edit.  

(From http://www.web3d.org/TaskGroups/x3d/translation/examples/games/3dtetris.wrl.) 
 
 

B. 3D RADAR VISUALIZATION 

Using the tools of X3D-Edit, it is thus possible to help visualize what a 3D set of 

ISAR images looks like if created via the superposition of multiple 2D ISAR images.  At 

the time of this thesis, the desired set of sample 2D ISAR data has not arrived from the 

Naval Research Laboratory.  Therefore, this section gives a description of the desired 

implementation within X3D and shows a scenario based upon sample ISAR images.  

These images are formed from the same sample data as was used to evaluate the DIS 

Adder Overflow in Chapter IV.  

The aim of this simulation was to recreate both the motion of the target ship and 

the motion of the radar platform aboard a P-3 aircraft.  On top of the visible ship model is 

placed the 2D ISAR image corresponding to both the motion of the P-3 and of the ship.  
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In the fully immersive virtual world created for the simulation, the user is able to navigate 

the viewpoint camera as needed to examine the resulting image from all angles.  The 

starting surface ship model used in the simulation is pulled from the online SAVAGE 

[13] model library of military vessels and is the model for a destroyer.  The model for the 

P-3 was created for this simulation using primarily NURBS geometry.  The smooth flight 

path of the P-3 is a smooth NURBS animation path.  All NURBS geometry and 

animation paths in the simulation are implemented at runtime via the NURBS Java 

engines created in conjunction with this thesis and explained in more detail in subsequent 

sections. 

The experiment is conducted in several stages.  First, the basic layout of the 

scenario is created, including only the ship model, P-3, and single ISAR image.  Aligning 

the image to the profile of the target ensures that the correct image aspect ratio and 

perspective are achieved.  The setup is shown in Figures 7.3 and 7.4.   

 

 

 

 

 

 

 

 

 

 

Figure 7.3 2D ISAR Overlay in X3D. 
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Figure 7.4 2D ISAR Overlay in X3D Stage 1. 

 

By analyzing this simple scenario, it is evident that new information about 3D 

ISAR methods can be obtained if the simulation is extended to include a progression of 

images.  The second stage in the experiment adds motion to the scene by correlating the 

movement and rotation of the target with the projected flight path of the P-3.  Moreover, 

a sequence of 600 2D ISAR images, corresponding to twenty seconds of data, is created 

and overlaid upon the ship model.  Figure 7.5 gives the corresponding setup.  Notice that 

two different ship models are used from Figure 7.4 to Figure 7.5.  In reality, the 

simulation data is created to resemble the profile of the USS Crocket, yet does not 

correspond exactly to any specific ship including the Crocket.  The point is made that the 

simulation is flexible and thus able to use any target model through the simple 

interchange of geometry nodes.  Once real ISAR data is received, choosing the specific 

vessel that was originally imaged becomes important.  The goal of this experiment is to 

provide proof of concept. 

 

.   
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Figure 7.5 2D ISAR Overlay in X3D Stage 2. 

 

This sequence is normally composed of real ISAR data recorded from an actual AN/APS-

137.  For simulation purposes, however, the sequence used is created manually through 

the modification of current range-Doppler profiles and in such a way as to emulate real 

ISAR data.  Particularly, range-Doppler images are dependent upon both the angle of the 

radar to the target and the motion of the target.  Therefore, the highest resolution image 

that can be obtained is achieved when the radar is 45 degrees off the bow of the target.  

When the radar deviates from this angle, the pitch of the ship is not as prominent with 

respect to the P-3 and thus lower Doppler shifts are received.  Notice the difference in the 

magnitude of the range-Doppler images of Figures 7.6 and 7.7.  In particular, Figure 7.7 

represents an image of the target at a completely perpendicular side angle where there is 

little rocking back and forth of the ship.  Within the simulation, a play-control menu 

allows the user to navigate between the beginning and end of the animation.  Two image 

planes are overlaid on the target.  One is located on the target itself and is transparent 

around the range-Doppler image.  This image plane is controlled directly by the play 

controls in order to examine each frame of the animation.  The other image plane is 

located above the target and provides a coherent movie of the image sequence for 

improved continuity across the length of the simulation. 
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Figure 7.6 2D ISAR Range-Doppler Image in X3D with Large Doppler Shift. 

 

 

 

 

 

 

Figure 7.7 2D ISAR Range-Doppler Image in X3D with Small Doppler Shift. 

 

From the previous figures, it is possible to align the geometry of the target with 

the Doppler shift within the image sequence.    As the target rotates with respect to an 

effectively fixed radar platform, it traverses a full 90-degree angle from side to side.  The 

range-Doppler image at each increment of this angle will exhibit a magnitude pro-

portional to the angular velocity of the target.  By collecting the images at each angular 

increment, a full 90-degree profile of the ship is obtained.  Although some of the 

resulting images will be inverted due to the target rotating away from the platform, their 

magnitude may still be used to construct the original ship profile.  This is the goal of 

stage 3.  The approach taken is to begin with the set of 14 range-Doppler images, each 

created roughly 6 degrees apart corresponding to a target rotation from 0 to 90 degrees.  

Figure 7.8 shows four of the images in the set.   
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Figure 7.8 4 Sample 2D ISAR Range-Doppler Images. 

 

These 14 images are subsequently overlaid on top of each other and separated uniformly 

in range.  A transparency channel allows images in the back to show through the empty 

parts of foreground images.  Figures 7.9 and 7.10 represent the superposition of images 

from two different viewing angles.  By combining the images in X3D, it is possible to 

quickly maneuver the camera and view the set from all angles. 

 

 

 

 

 

 

 

Figure 7.9 3D Range-Doppler Superposition. 
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Figure 7.10 3D Range-Doppler Superposition. 

 

The figures represent an actual example of how 2D images may be combined to form a 

3D perspective.  Although these sample images come from the DIS software simulation, 

this same approach can be used to combine 2D images obtained through interferometric 

ISAR or the 3-receiver ISAR setup.  Being able to combine images from truly orthogonal 

receivers allows for the cross-range scale dimension, estimated in Figure 7.10, to be 

computed.  Once the scale factor is determined, actual geometry can be formed from the 

multiple range profiles.   

 The generation of geometry is simulated in this experiment based upon the 

superposition of 2D sample images just discussed.  Since each image represents a slice of 

the target profile at a specific angle, the creation of a geometric slice corresponding to 

each range profile allows for the superposition of these geometric slices to estimate target 

depth.  This is done by creating profile curves for each of the 14 images.  From the set of 

profile curves, a set of 14 extrusion surfaces is generated.  Coherently aligning each 

extruded surface and offsetting each profile in the range dimension, a 3D representation 

of the original target is obtained.  Figure 7.11 depicts a linear approximation between 

geometric profiles while Figure 7.12 shows a cubic approximation, representing the 

overall surface curvature of the return signals.   
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Figure 7.11 3D Geometric Profile Linear Approximation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.12 3D Geometric Profile Cubic Approximation. 
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The new profile geometry is further adjusted to fit the profile of the original target.  

Moreover, since the target is symmetric, the geometry can be copied and reversed to 

create a complete 3D ISAR geometric model.  Figure 7.13 shows this final model. 

 

 

 

 

 

 

 

Figure 7.13 3D Geometric Profile Model. 

 

Once the new 3D geometric model is obtained from 2D ISAR images, the original 

simulation is run once more.  This time, the range-Doppler profiles are overlaid on the 

new geometric model to validate the creation process.  Figures 7.14 and 7.15 show 

screenshots from this validation.   
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Figure 7.14 Final 3D ISAR Overlay Simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 Final 3D ISAR Overlay Simulation. 
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Through the combination of a fully immersive 3D environment and geometric 

estimations of range-Doppler profiles, the user is able to visualize all angles of the 3D 

ISAR generation process.  This approach sheds new light on developing 3D ISAR 

techniques and forces researchers to explore new avenues of study, including similar 

geometric simulations using data received from the techniques suggested in Chapter VI. 

 

C. NON-UNIFORM RATIONAL B-SPLINES (NURBS) OVERVIEW 

Computer graphics is rooted in the ability to mathematically describe reality.  

Graphics hardware knows nothing of what a sphere looks like and cannot comprehend a 

line segment with an infinite amount of precision.  Like all concepts within a digital 

domain, shapes are simply estimations of reality based upon a mathematical description 

and implemented in a finite memory space.  In the world of computer graphics, polygons 

are typically the fundamental building blocks of reality itself.  Simple triangles combine 

to form both the smallest detail and smoothest curve of a company’s latest sports car 

within Autocad.   

Nevertheless, to describe the position of each polygon along that smooth curve, 

one must be able to describe the path, or curve itself, along which the shape follows.  The 

simplest way to describe a curve is to create a piece-wise linear set of line segments such 

as Figure 7.16 
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Figure 7.16 Piecewise Linear Curve. 
 

The shortcomings of this approach are rather obvious, producing a path with hard 

corners and a generally “blocky” appearance.  Over the past fifty years, many researchers 

have developed sets of equations used to both describe and manipulate a set of points 

through which a smooth curve may be drawn. This chapter summarizes the basis for the 

representation of curves and surfaces using Non-Uniform Rational B-Splines (NURBS).  

Although not a new concept, NURBS have been distinctly lacking in the implementation 

of X3D software.  In order to create the necessary geometry, including a NURBS P-3 

aircraft and its flight path, for use in 3D ISAR explorations corresponding to the current 

DIS system, special effort is taken to implement the NURBS specification for X3D.  This 

section details the process of that undertaking. 

 

1. The Bézier Curve 

A curve is simply a continuous path from one point to another.  It may be open or 

closed, straight or twisted.  In each case, there is a specific starting point and end point, 

between which a path is created.  The object of representing this curve within a limited 

memory space, such as a graphics card’s hardware buffer, is to be able to describe the 

curve without loss of precision by as few points as possible.  French engineer Pierre 
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Bézier, working for Renault Automobile, developed some of the initial theories behind 

free-form curves and surfaces. 

Bézier’s general approach is to use a control polygon whose vertexes, or corners, 

govern the shape of the curve between them.  Following the development in [14], the 

mathematical model that describes how the curve behaves between these corners is 

known as the curve’s basis.  For Bézier curves, the basis used is the Bernstein Basis, 

whose form is shown below.   
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where 

 ( )P t is the point along the curve corresponding to the parametric parameter t , 

n   is the degree of the curve, 

 iB  is the set of control points defining the control polygon, and 

 , ( )n iJ t  is the Bernstein Basis for the -thi  control point corresponding to a degree 

of n .  

Several important properties of Bézier curves include: 

• The basis functions are real  

• The degree of the polynomial defining the curve segment is one less than 

the number of control polygon points, or order of the curve  

• The curve generally follows the shape of the control polygon  

• The curve travels through the first and last control points  
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• The order of the curve is equal to the number of control points on the 

control polygon. 

The Bézier version of Figure 7.16 is shown in Figure 7.17.  Five points define the 

degree-four curve.  Bézier curves are generally simple to understand.  A higher degree, 

smoother curve is created simply by adding more control points to the control polygon.  

This, however, limits the effect that each control point can have on small, local regions of 

the curve.  A change anywhere is felt throughout the entire curve. Moreover, a long 

curve, composed of many points can become computationally expensive to generate 

when the degree of the curve is inseparable from the number of control points.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 Bézier Curve of Degree 4. 

 

2. B-Splines 

In order to gain more freedom within the curve, a more localized basis function 

can be used.  B-Spline curves begin with the Bézier approach of using a control polygon 

to define the bounds of the curve.  Similarly, the parametric parameter t  describes the 

position vector along the curve.  The format of a B-Spline is given as [14] 
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where 

, ( )i kN t  is the Cox-de Boor Basis for the -thi  control point, 

ix is the -thi  element of a knot vector, and 

k  = 1n + , is the order of the curve. 

There are still 1n +  control points, represented as iB .  The difference is that , ( )i kN t  is 

defined by the recursive Cox-de Boor formula where ix  represents elements of a knot 

vector.  Properties of B-Splines are generally the same as for Bézier curves.  Some of the 

more important properties include [14]  

• The sum of the basis functions for any value t  is 1, 

1

,
1

( ) 1
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N t
+

=

≡∑          7.3 

• Each basis function is positive or zero for all parameter values 

• Transformations are applied to individual control polygons as opposed to 

the entire curve. 

The most important part of a B-Spline is the knot vector, x .  The knot vector is 

simply a set of floating point values, equal in number to the order of the curve plus the 

number of control points.  It is composed of non-decreasing values that span the length of 

the curve.  In other words, it is possible to animate an object along a B-Spline by 
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animating the parameter t  from the first knot value, linearly, to the last knot value.  

Moreover, the order of the curve is not bound to the number of control points in the curve 

except that the number of control points must be at least equal to the order. The last, and 

perhaps most powerful property of a B-Spline, is that changes to a control point are 

localized within the curve.  This is especially useful in animation where computing the 

entire curve at each frame is not practical.   Visually, B-Splines look nearly identical to 

Bézier curves.  As such, the concepts of uniform and rational curves will be developed 

first before presenting examples of B-Splines. 

 
a. Uniform vs Non-Uniform B-Splines 

Thus far, B-Splines have been introduced as a better alternative to Bézier 

curves in complex designs due to the locality of each control point.  Yet, under the B-

Spline umbrella, several varieties exist.  Figure 7.18 shows two examples of knot vectors.  

Since the knot vector determines how a curve will react to changes made to the control 

points, a uniform knot vector allows for a uniform distribution between control points.  

Although a detailed discussion of knot vectors and their impact is beyond the scope of 

this section, it suffices to mention that knot vectors are not intuitive.  The knot vector 

shown in Figure 7.18a is considered uniform because its values are evenly spaced.  By 

changing the spacing between these values, a non-uniform knot vector results as in the 

case of Figure 7.18b.  Notice the change in curve concavity made by the non-uniform 

knot vector. 

 

 

 

 

a. [0  1  2  3  4  5  6  7  8  9]     b. [0  0  0  5  9  10  30  31  51  52] 

 
Figure 7.18 (a) Uniform and (b) Non-Uniform Knot Vectors. 
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Having the ability to create a non-uniform knot vector allows the designer the freedom to 

unevenly weight portions of the curve.  This may be done to form a closed, non-

overlapping curve while maintaining the proper curvature.  However, very few objects 

are actually created with a non-uniform knot vector.   

Knot vectors are allowed to be “open” as well.  Contrary to a simple, 

uniform knot vector, open knot vectors include a multiplicity of knot values at the 

beginning and end of the vector equal to the order of the curve.  Figure 7.19a shows an 

example for a curve of order 3, degree 2.  Notice how there are three zeros, followed by 

four uniformly spaced values, and then three fives.  The specific range of theses values is 

not important, and thus knot vectors may be normalized as in the case of Figure 7.19b.  In 

either case, the result on the curve is the same.   

 

 

 

a. [0  0  0  1  2  3  4  5  5  5]     b. [0  0  0  .2  .4  .6  .8  1  1  1] 

 
Figure 7.19 (a) Open Uniform and (b) Open Uniform Normalized Knot Vectors. 

 

3. Non-Uniform Rational B-Splines (NURBS) 

The formula for a Non-Uniform Rational B-Spline is [14] 
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where ih  is the weighting applied to -thi  control point.   Notice how Equation 7.4 is 

almost identical to the formula representing B-Splines.  The difference lies in h
iB  which 

represent four-dimensional homogenous vertices that are projected back into the three-

dimensional realm.  The fourth dimension is what causes the curve to be rational where ih  

is simply an extra weighting value applied to each control point.  By increasing the 

weighting on the control point, the closer the curve will be to passing through that control 

point.  Typically, the weightings are ignored by setting all ih ’s to a value of 1.  , ( )i kN t  

represents the same Cox-de Boor basis function as for B-Splines.   

In summary, a NURBS curve represents a smooth, easily manipulated path 

capable of practically any degree, uniformity, and weighting, to describe nearly any 

shape known to man.  Figure 7.20 gives an example of a NURBS curve of degree 3.  The 

next section shows how to extend the general NURBS curve formula to create NURBS 

surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.20 NURBS Curve of Degree 3. 
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a. Nurbs Surface 

The logical extension of a NURBS curve is a NURBS surface.  Simply 

put, a NURBS surface is nothing more than a patch created by a two-dimensional set of 

NURBS curves, represented by [14] 
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where 

 ( , )Q u v is the point on the surface corresponding to the parameters u and ,v  

 ,
h
i jB  is the four dimensional homogeneous control vertexes, 

, ( )i kN u is the Cox-de Boor Basis for the -thi  control point corresponding to a 

degree of n in the u  direction, 

, ( )j lM v  is the Cox-de Boor Basis for the -thj control point corresponding to a 

degree of m  in the v  direction, 

 k  = 1n + , is the order of the surface in the u  direction, and  

 l  = 1m + , is the order of the surface in the v  direction. 

The difference between the NURBS curve equation and this one is that the Cox-de Boor 

Basis functions are now calculated recursively for a double summation of orthogonal 

control points.  If , ( )i kN u  represents the basis functions for the control points along one 

dimension, such as u , then , ( )j lM v  represents the basis functions for the control points 

along the v  dimension, perpendicular to the u dimension.  Consider Figure 7.21 for a 

visual example.   
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Figure 7.21 NURBS Surface. 

 

Since there are two dimensions, there are also two knot vectors based on 

two different orders, one for the u  direction and one for the v  direction.  It is not 

uncommon for a NURBS surface to have two different degrees.  Moreover, nothing 

prevents one knot vector from being uniform while the other one is non-uniform.  It is 

this flexibility in the mathematical model that gives NURBS surfaces such flexibility in 

practice.   

 

D. X3D NURBS IMPLEMENTATION 

The goal of implementing NURBS for X3D is to follow the X3D NURBS 

Specification created in 1997.  Although the specification has been around for six years, 

the work done in this thesis represents the first open implementation of it for general-

purpose use and distribution.  Blaxxun Interactive and Parallel Graphics have both 

created proprietary implementations in the past.  Yet these implementations are neither 

current nor consistent with the X3D specification.   

The basis for the current open implementation lies in the ability of the 

X3D/VRML language to provide a Java interface to the X3D world.  As such, there is an 



104 

X3D Prototype node created for each part of the NURBS specification that is 

implemented.  Each Prototype node references a Script node that contains a full-fledged 

Java implementation of the math just discussed behind the NURBS node. This section 

describes the Java implementation for NurbsCurve, NurbsSurface, and 

NurbsPositionInterpolator Prototypes.  The code base may be found in the Appendix.    

 
1. Nurbs Curve Prototype 

The NurbsCurve specification is shown in Figure 7.22. 
 
 NurbsCurve : X3DParametricGeometryNode { 

 MFVec3f  [in,out] controlPoint [] (-∞ ,∞ ) 

 SFInt32  [in,out] tessellation 0  (-∞ ,∞ ) 

 MFDouble [in,out] weight       [] (0,∞ ) 

 MFDouble []       knot         [] (-∞ ,∞ ) 

 SFInt32  []       order        3  [2,∞ ) 
 } 

Figure 7.22 NurbsCurve Specification (From Ref. [11].) 
 

By convention, variables given the “[]” qualifier are static values that must be specified 

upon initialization, with accessType “initializeOnly.”  If no weight values are given, the 

default non-rational vector of all ones will be created.  Similarly, if no knot vector is 

given, the standard open uniform knot vector is automatically created at runtime.  The 

curve defaults to an order of 3, or degree 2.  In most cases, acceptable results may be 

obtained with an order of 4, or cubic degree.  Looking back at Equation 7.2c, the 

calculation of basis functions for NURBS are very mathematically intensive, as well as 

recursive.  Increasing the degree of the curve adds an extra level of recursion to this 

process.  Therefore, it is ideal to use the smallest possible order to obtain the desired 

curve smoothness.   

Variables that can be animated include the controlPoint vector, its weightings, as 

well as the tessellation of the curve.  Once again, if Equation 7.4a is analyzed, notice that 

the control points, represented by the iB  vector, are only applied to the curve after the 

basis functions have been calculated.  Since the basis functions rely solely on the degree 

of the curve and the knot vector, dynamically changing the control points of a curve 
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requires only that the top-level summation be recomputed.  This allows for real-time 

animation of the NurbsCurve node.  Figure 7.23 shows several examples of the 

NurbsCurve node in practice.  These examples illustrate the effect of using curves of 

varying degree and tessellation.  Tessellation is accomplished by computing Equation 7.4 

for a given number of points along the knot vector between the first and last value.  The 

default tessellation of 20 means that the first, last, and 18 intermediate points are 

calculated along the curve.  These 20 points form the basis of 19 line segments that 

approximate the curve using an IndexedLineSet node within X3D.  Simply put, the 

higher the tessellation, the smoother the curve will appear on screen, however the more 

computationally expensive the curve becomes.   

 

 

 

 

(a) k = 2  tessellation = 20    (b) k = 4  tessellation = 20  

 

 

 

(c) k = 3  tessellation = 50    (d) k = 5  tessellation = 50 

 
Figure 7.23 NurbsCurve Node Examples. 
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2. Nurbs Surface Prototype 

The specification for the NurbsSurface node is shown in Figure 7.24. 
 
 NurbsSurface : X3DParametricGeometryNode {  

   MFVec3f  [in,out] controlPoint  []   (-∞ ,∞ ) 
   SFNode   [in,out] texCoord      []    

   SFInt32  [in,out] uTessellation 0    (-∞ ,∞ ) 

   SFInt32  [in,out] vTessellation 0    (-∞ ,∞ ) 

   MFDouble [in,out] weight        []   (0,∞ ) 

   SFBool   []       ccw           TRUE 
   SFBool   []       solid         TRUE 

   SFInt32  []       uDimension    0    [0,∞ ) 

   MFDouble []       uKnot         []   (-∞ ,∞ ) 

   SFInt32  []       uOrder        3    [2,∞ ) 

   SFInt32  []       vDimension    0    [0,∞ ) 

   MFDouble []       vKnot         []   (-∞ ,∞ ) 

   SFInt32  []       vOrder        3    [2,∞ ) 
   SFBool   []       closed        FALSE 
 } 

 
Figure 7.24 NurbsSurface Specification(From Ref. [11].) 

 

Notice how many variables are now qualified with the surface direction u or v .  Similar 

to NurbsCurve, default values for the weight, order, and knot vectors will be created if 

not specified by the user at runtime.  ControlPoint and tessellation values can again be 

animated.  However, in contrast to a NurbsCurve, the computational expense to compute 

a NurbsSurface has increased to *N M  where N  and M  represent the u  order and v  

order of the curve, respectively.  Changing the controlPoints vector still only requires that 

the final, now double, summation be recomputed.   

Figure 7.25 shows a simple NurbsSurface, describing a plane.  The dimension in 

each direction is 5, for a total of 25 control points.  Computing the double summation for 

this surface requires on the order of 25 multiplications and 25 sums for each tessellation 

in each direction for a total of 10,000 multiplications and 10,000 summations with a 

default tessellation of 20 in each direction.  This task is not too difficult for most modern 

processors.   
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Figure 7.25 NurbsSurface Plane. 

 

However, consider the NurbsSurface head shown in Figure 7.26.  This surface is 

created by 24 points in the u direction and 30 points in the v  direction for a total of 720 

control points.  The final summation in this case requires on the order of 720 

multiplications and 720 sums for each of 400 tessellation points or nearly 576,000 total 

floating point computations.  If the entire summation is recomputed for the smallest 

change in one control point, then even the fastest computers available would have 

difficulty doing such a large number of floating point operations for each frame at a rate 

of 30 frames per second.  Not only this, but there is considerable overhead involved in 

using the Java interface to X3D, further slowing down the frame rate.   
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(a) u,vTessellation = 20 

 

 

 

 

 

 

 

 

(b) u,vTessellation = 30 

Figure 7.26 NurbsSurface Head Tessellation Example. 
 

Remembering the first principles of B-Splines, however, quickly provides a 

solution to this problem.  When one control point moves, the entire surface does not 

change.  Instead, the change is localized around the control point that moves.  Thus there 

must be a way then to only compute the surface around points that change.  Not only does 

the degree of the curve represent the smoothness of the surface, it also defines the extent 

to which a control point exerts influence on the surrounding surface.  In general, the order 

of the curve determines how many neighboring control points are affected by the changes 
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in one control point.  Even though the NurbsSurface Head has 720 control points, the 

order in any one direction is only 4.  This means that the total surface might only change 

by about 1% for movement in a single control point.   

Moreover, many NURBS surfaces do not require that all control points be 

animated at once.  Considering the NurbsSurface Head again in Figure 7.27, to animate 

the mouth, less than ten control points must be changed.  By incrementally updating the 

surface based only upon the control points that change, a 1600% increase in 

computational efficiency is reached.  Examples for the animated head have shown 

improvements of this much and more after incremental animation algorithms are 

implemented.  What once ran at a dismal 0.2 frames per second now reaches as high as 

15 frames per second.   

 

 

 

 

 

 

 

 

 

(a) Pose One       (b) Pose Two 

Figure 7.27 NurbsSurface Head Animated. 

 

A final word on the tessellation of NURBS surfaces is in order.  Despite the fact 

that massive improvements in speed can be obtained simply by incrementally updating 

the surface around points that change, unfortunately tessellation algorithms are not that 

lucky.  Since tessellation requires increasing the number of points along the knot vector 

that are computed, a change in tessellation means new values for the basis functions at 
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those points must also be computed.  It is thus best to determine the necessary tessellation 

value ahead of time and to stick with it.  Level of detail can be accomplished through 

existing nodes within X3D that allow for several versions of the same shape to be used 

for varying resolution requirements.  In this way, a NURBS object is only needed at the 

closest distance.  Fast polygonal shapes may be used for lower resolution estimates.   

 

3. Nurbs Position Interpolator Prototype 

The specification for the NurbsPositionInterpolator node is shown in Figure 7.28. 
 

NurbsPositionInterpolator : X3DInterpolatorNode {  

  SFFloat  [in]     set_fraction     (-∞ ,∞ ) 
  SFBool   [in,out] fractionAbsolute TRUE  

  MFDouble [in,out] key              [](-∞ ,∞ ) 

  MFVec3f  [in,out] keyValue         [](-∞ ,∞ ) 

  MFDouble [in,out] weight           [] (-∞ ,∞ ) 

  MFDouble [in,out] knot             [] (-∞ ,∞ )   

  SFInt32  [in,out] order             3  (2,∞ ) 
  SFVec3f  [out]    value_changed 
} 
 

Figure 7.28 NurbsPositionInterpolator Specification(From Ref. [11].) 

 

The true power of a NurbsCurve is the ability to animate an object along the curve 

as an animation path.  This is the goal of the NurbsPositionInterpolator node.  Many of 

the fields are the same as for the NurbsCurve.  However, there are no control points 

specified.  Instead, control vertices are found in the keyValue field.  In accordance with 

traditional X3D PositionInterpolator concepts, the “key” field defines time points at 

which the value in the keyValue field will be reached.  The control points are simply 

goals along the way, and the keys are the times, one corresponding to each control point, 

when each goal is reached.  This brings up an interesting point.  Unlike in traditional 

linear position interpolators where the path is guaranteed to travel through each 

keyValue, the very nature of NURBS curves are such that the only control points that the 

path is guaranteed to touch are the first and last.  Therefore, care must be taken to ensure 

that the total shape of the path is considered so that the correct motion is obtained.  For 

this reason, the NurbsPositionInterpolator allows the user to see the path that has been 
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created so that it may be adjusted as needed to meet the specified purpose.  Figure 7.29 

shows an example of using the NurbsPositionInterpolator for a sphere traversing a 

NurbsCurve.   

 

 

 

 

 

(a) 10% Along Path     (c) 90% Along Path 

 

 

   (b) 50% Along Path 

Figure 7.29 NurbsPositionInterpolator Example. 
 

4. Future Nodes 

The world of NURBS is not limited to the three nodes discussed in this chapter, 

but instead spans volumes on specific techniques used to create and manipulate complex 

objects. One additional node that would add greater flexibility to the current X3D 

implementation of NURBS is a NurbsOrientationInterpolator.  Recently added to the 

NURBS specification for X3D, the goal of this node is not to follow the position of a 

NURBS curve, but as the name suggests, the orientation of the curve.  Through 

calculation of the normal at each point along the curve, it is possible to output an 

orientation that may be routed to the orientation of the object following the path.  This 

node is especially useful for computing the orientation of flight paths, releasing the 

animator from worrying about the direction of the plane while it follows the path.  In 

addition to following the orientation of the path, additional work could allow for a certain 

degree of banking around turns and deviations from the normal based on the curvature of 

the path. 
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Although NURBS reflect smooth mathematical descriptions of complex objects, 

the general form of a NURBS surface requires it to be continuous across both 

dimensions.  Many researchers have attempted to overcome this limitation through the 

implementation of trimmed NURBS.  As the name suggests, a trimmed NURBS surface 

is one in which a specified patch has been trimmed out, or removed.  Figure 7.30 shows 

an example of trimmed NURBS, implemented in the graphics package Maya™. Much of 

the difficulty in trimming surfaces lies in maintaining boundary conditions along multiple 

surface curves, or isoparams.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.30 Trimmed NURBS Example. 

  Both NurbsOrientationInterpolator and TrimmedNurbs nodes have been added 

to the X3D specification.  With time, corresponding implementation of these nodes will 

help bring greater flexibility to the creation of complex objects within X3D. However, 

significant flexibility to import NURBS into X3D from commercial software packages 

already exists as the next section explains. 
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5. Maya™ Authoring Tool Plug-in for X3D Export 

Much of the inspiration to implement the NURBS specification for X3D came 

from experience working with the popular graphics authoring package Maya™.  Created 

by Alias|Wavefront, Maya™ represents the current industry standard in 3D modeling and 

animation.  One of the earliest topics presented when learning a 3D modeling program, 

the power of NURBS is quickly discovered as a fast and straightforward method to create 

models of incredible complexity and smoothness.  The properties of NURBS, previously 

mentioned, make them the perfect sculpting medium for artists familiar with clay 

molding.  Pushing and pulling on individual vertices translates to smooth and efficient 

modifications to the “clay.”  

While Maya represents an amazingly powerful tool by which NURBS can be 

created and molded, there was no available exporter to translate these objects into the 

X3D format.  This is due mainly to the fact that until now there has not been a general 

implementation of NURBS within X3D.  Since X3D by its very nature is not a modeling 

tool but a medium wherein to develop interactive worlds, implementing NURBS within 

X3D without a method to import them invalidates the original effort.  When the 

specification for VRML was released in 1997, a commercial plug-in for Maya™ to 

export polygonal objects was also soon released.  This plug-in does export both polygon 

and NURBS components.  However, NURBS are first converted into polygonal objects 

and lose all previous properties of continuity embedded in the NURBS mathematical 

model.  Since NURBS now have a general implemented in X3D, there must be a way to 

export them in their original structure from Maya™ as well. 

This is the goal of the X3DNurbsExport plug-in for Maya™, created as part of the 

general NURBS implementation.  The plug-in is very simple and is in its early stages of 

development.  As such there are many quirks yet to be worked out.  However, it is the 

first fully functioning and distributable plug-in for Maya™ that is able to export NURBS 

geometry in its true sense, directly to the current X3D format.  This, above all else, gives 

credibility to the NURBS implementation as a meaningful contribution to the X3D 

community.  The fact that most of the examples presented thus far were originally created 

in Maya™, and exported to X3D intact, validates both the implementation model as well 
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as the plug-in.  Figure 7.31 presents two examples of more complex objects created 

within Maya™ and exported to X3D.  These models each contain a combination of six or 

more NURBS surfaces. 

 

 

 

 

 

 

 

 

 

 

(a) Fred the Bunny    (b) Hurricane Lantern 
 

Figure 7.31 NurbsSurfaces Exported by Maya X3DnurbsExporter Plug-in. 

 

The X3DNurbsExport Plug-in is written within the framework of Microsoft 

Visual C++ and the plug-in wizard provided by Alias|Wavefront.  In its most basic form, 

it reaches into the geometry dependency graphs of Maya’s internal data structure and 

pulls out the necessary fields to create a NurbsSurface node in X3D.  The controlPoint, 

weight, knot, and order fields are pulled directly from Maya and rewritten to match the 

X3D implemented format.  One initial problem that surfaced during the creation of the 

plug-in is that closed surfaces, those in which the first control point align with the last 

control point, did not render properly.  Figure 7.32 shows an example of this.   
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    Overlapping Edges 

 

 
Figure 7.32 Incorrect NURBS Surface Closure. 

 

As it turns out, there are many different ways to specify the end conditions of a 

NURBS surface.  Maya™ chooses to use what is commonly referred to as 

pseudovertices.  These are extra control points that extend beyond the drawn surface.  

They are included to compute the surface, but not actually drawn out.  As there are 

various implementations of pseudovertices, unless the specific nature of these extra 

vertices is known, it is very difficult to translate NURBS surfaces created in this manner.  

For this reason, an extra field is added to the NurbsSurface node in order for the user to 

specify whether or not the surface is closed.  By rebuilding these closed surfaces in 

Maya™ to adhere to more traditional NURBS creation methods, and by setting the 

“closed” field to “true” in the NurbsSurface node, the resultant surfaces will be rendered 

properly within X3D.  Figure 7.33 shows the result of rebuilding the NURBS head within 

Maya™, as well as the effect the closed field has upon the surface.  Although the closed 

option specifically tells the algorithm to connect the first and last control points when 

tessellating, no seams are evident upon visual inspection of the resulting object.   
 

 

 

 

 

 

 

(a) Closed Field False  (b) Closed Field True 
Figure 7.33 Rebuilt NURBS Surfaces for End Conditions 
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E. SUMMARY 

This chapter presents the tools necessary to realize the visual interpretation of 3D 

ISAR.  The X3D specification, in conjunction with X3D-Edit and Java, provides a 

powerful method of bringing interactive virtual content to web-based applications.  This 

software is constantly being improved and updated due to its close ties to NPS.  As such, 

it makes an excellent platform for developing 3D ISAR simulations at NPS.  The general 

3D ISAR concept is presented through the overlay of sample 2D images on a 3D ship 

model.   Through the correlation of 2D range-Doppler profiles, 3D geometry can be 

extracted.  The next logical step in the continuation of research into this topic is to apply 

the equations developed in Chapter VI to an X3D simulation.  Within this realm of virtual 

reality, the full capability of NURBS may be employed to generate complex, high-

resolution graphical models to correlate ship geometry with ISAR data.  Eventually, 

methods of more closely connecting the DIS and X3D simulations can be explored to 

provide seamless interaction between both platforms.   
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The ability to discern the enemy amongst the battlefield becomes increasingly 

difficult as the battlefield landscape changes to reflect both massive oceans and crowded 

littoral passageways.  To detect a vessel provides little useful information if the target 

cannot be classified. Furthermore, modern weapon systems dictate that surveillance 

aircraft remain as far from the target as possible to maintain a safe region of operation.  

Providing both detection and classification capability at full range for potential threats, 

Inverse Synthetic Aperture Radar gives an operational advantage to those deploying it.  

However, this technology is available not only to the United States and allied countries, 

but also to its potential enemies.  It is therefore necessary to develop counter ISAR 

methods.  The Digital Image Synthesizer is a key step forward in realizing this goal. 

Validating the DIS is done on several levels, from software simulation to full 

hardware implementation.  Extending the software validation began by Fernando Le 

Dantec in [1], the integrity of hardware design choices is scrutinized through the Adder 

Overflow Analysis in Chapter IV.  Specifically, it was shown that the 16-bit summation 

adder at the end of the DIS is susceptible to detrimental overflows when false-targets of 

realistic size are simulated.  Due to the binary nature of the power-of-two gain shifter, 

however, a viable, low-cost solution to this problem was presented which allows for the 

total signal gain to be reduced as needed to bound the output signal to within reasonable 

levels.   

The groundwork for further DIS validation is laid through the creation of a 

software model, described in Chapter V, which is capable of processing realistic ISAR 

simulation data.  This model is able to both display the standard 2D ISAR images, and 

run the software DIS model with coefficients pulled from the acquired data.   Comparison 

of the results provides verification of the algorithms behind the software model and, thus, 

also behind the hardware implementation on which the software is based.  Once 

fabricated, the true hardware DIS system can be run from these extracted coefficients to 

validate the integrated circuit chip as well. 
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Traveling beyond the current DIS limits of 2D ISAR, this thesis provides the 

foundation for research into the development of three-dimensional ISAR and its 

application to the DIS.  Through a coherent examination of current attempts at 3D ISAR, 

a valid direction in which to steer future research can be found.  Specifically, promising 

results have been produced through the analysis of the backscattering effects in the 

phases of adjacent range cells from current 2D ISAR images when processed through 

multiple receivers.  The added dimension of elevation to ISAR images allows for 

enhanced feature recognition in addition to standard target classification.  This can be 

especially useful in the littoral combat region where the ability to quickly detect and 

classify small, fast-moving craft is of the utmost importance.   

Through the development of tools such as X3D and its NURBS subsystem, a 

specific approach for analyzing 2D ISAR images in light of 3D techniques was presented.  

The overlaying of multiple radar images on a geometric ship model, followed by geo-

metric feature extraction, allows the user to fully explore the correlation of image data to 

physical geometry.  This correlation can uncover novel feature recognition schemes as 

well as previously unnoticed weaknesses in current imaging techniques.  By building on 

the foundation laid through this thesis and its corresponding software implementations, 

the next step forward in both ISAR countermeasures and 3D ISAR image generation may 

be realized. 

 

B. RECOMMENDATIONS FOR FUTURE WORK 

The research conducted on the feasibility of 3D ISAR represents only the tip of 

the information iceberg on 3D radar imaging concepts.  Building upon the foundation of 

3D interferometric ISAR and 3-receiver ISAR, the algorithms for these techniques can be 

implemented and tested based on actual multi-receiver experiments.  Going one step 

further, the 2D ISAR images created by these approaches may be inserted into an X3D 

virtual simulation as described in Chapter VII.  From there, it is possible that new 

methods of image formation and correlation may be discovered to further enhance the 

algorithms.  By developing a practical method of visualizing 3D ISAR, radar operators 

can more effectively accomplish their mission.   
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The DIS is nearing completion and may be fabricated by 2004.  It is thus 

important to test the actual chip once in production.  While traditional testing is sure to be 

done to verify its operation, additional tests can presently be developed by which to 

explore the current design capabilities of the DIS with respect to 3D ISAR.  If, by the 

time the actual chip is fabricated, a working software 3D DIS model is completed, this 

additional testing is simply the next step in the natural progression of the development 

process and an excellent opportunity for testing current algorithms.  Regardless of the 

timeframe, however, future work on either the algorithms behind 3D ISAR, or new 

methods of visualizing the resultant images, will be helpful in both developing the next 

generation of high-resolution radar devices and in supporting future military operational 

research. 
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APPENDIX 

The appendix contains a listing of acronyms mentioned in the thesis, as well as 

the source code for the modifications to the DIS, and distribution information on how to 

obtain an accompanying cd-rom. 

 

A. ACRONYMS 

2D  Two-Dimensional 

3D  Three-Dimensional 

DIS  Digital Image Synthesizer 

DRFM  Digital Radio Frequency Memory 

IC  Integrated Circuit 

ISAR  Inverse Synthetic Aperture Radar 

MATLAB Mathematical Laboratory 

SAR  Synthetic Aperture Radar 

X3D  Extensible 3D 

 

B. DIS SOFTWARE UPDATE 
%************************************************************************** 
%  BeginDataProcessing.m                                                  * 
%                                                                         * 
%  - Front end to DIS simulation.                                         * 
%  - Creates 2D image based on input data set                             * 
%  - Extracts coefficients and runs DIS with those coefficents            * 
%  Modified by C. Adams June 2003 based on previous software from         * 
%  F. Le Dantec and P.E.Pace                                              * 
%                                                                         *     
%************************************************************************** 
 
M = 32; % Number of returns per pulse = number of range bins 
windowSize = 128; % Number of pulses within window 
N = 128; % Total number of pulses in data set 
bw = 500E6; % Bandwidth 
tau = 1/bw; % Pulse width 
fs = 2*bw; %Sampling Frequency 
prf = 200; %Pulse Repetition Frequency 
pri = 1/prf; %Pulse Repetition Interval 
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k = bw/tau;     % Pulse compression rate (deltaBW/uncompr.pWidth) 
nbitsdop = 5;       % # of bits used for phase quantization 
Ts    = 1/fs;     % Sampling time 
t0    = Ts:Ts:tau;         % Interpulse sample index 
rag_pts = length(t0);     % Number of samples per chirp pulse (range cells) 
rg_pts = max(rag_pts,M*10); % # of range FFT pts including padding 
 
fullDataSet = zeros(M,N); % <-----   Data Set goes here 
 
%For each window set of data, copy windowSize pulses from fullDataSet 
% into summedReturnI 
for winNum = 1:N-windowSize+1 
    summedReturnI = zeros(M,windowSize); 
    counter = 1; 
    for index1 = winNum:windowSize+winNum-1 
        for index2 = 1:M 
            summedReturnI(index2,counter) = fullDataSet(index2,index1); 
        end 
        counter = counter + 1; 
    end 
     
    % Create Reference Signal for Cross-corellation 
    referenceS = zeros(M,windowSize); 
    for n = 1:windowSize 
        for m = 1:M 
            t = ((m-1)/fs + (n-1)*pri); 
            referenceS(m,n) = rect(t,tau)*exp(j*(pi*bw/tau)*(m/fs+n*pri)^2); 
        end 
    end 
 
    % Range Compression 
    I_kn = fft(summedReturnI); 
    S_kn = fft(referenceS); 
    complexRangeProfile = ifft((I_kn .* conj(S_kn))); 
     
    %load targetSum; 
    %complexRangeProfile = targetSum; 
 
    % Azimuth Compression 
    originalImage = flipud(abs(fft(complexRangeProfile.')));  
 
    % ISAR IMAGE PLOTS (Range Doppler profile): 
    figure; 
    dopp = (1:size(originalImage,1))*prf/windowSize; % Doppler axis 
    rang = 1:size(originalImage,2);                    % Range axis 
    colordef black                                  % Background color 
    colormap(hot(100)) 
    surf(rang,dopp,originalImage), shading interp, lighting phong, view(0,90); 
    title('Range-Doppler profile of true target'); 
    xlabel('Down Range Cells');  
    ylabel('Doppler frequency [Hertz]'); 
    %axis([0 32 0 100]) 
    axis tight 
     
    % Extract Coefficients and Run DIS  
    extractCoefficients(complexRangeProfile, M, windowSize, Ts, tau, nbitsdop, 
t0, rag_pts, rg_pts, winNum) 
    runDIS(windowSize,rg_pts,M,rag_pts,k,t0,prf,nbitsdop,winNum) 
     
    % Go get the next window's worth of data 
end 
 
%************************************************************************** 
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%  ExtractCoefficents.m                                                   * 
%                                                                         * 
%  - Extracts coefficients and stores them in paraMULTIq4Ship_winNum.txt  * 
%  for the window number winNum                                           * 
%  Modified by C. Adams June 2003 based on previous software from         * 
%  F. Le Dantec and P.E.Pace                                              * 
%                                                                         *     
%************************************************************************** 
 
function extractCoefficients(complexRangeProfile, M, windowSize, Ts, tau, 
nbitsdop, t0, rag_pts, rg_pts, winNum) 
 
% CREATION OF GAIN MODULATION COEFFICIENTS : 
 
amp = abs(complexRangeProfile);          % Magnitude of combined signal. 
gain = ones(M,windowSize);             % Default gain coefficient is 1. 
fq = 1.5; 
for i1 = 1:M,         
    for i2 = 1:windowSize, 
        normAmp = amp(i1,i2)/max(max(amp)); % Magnitudes are normalized.      
        for s=1:10, 
            if normAmp > (2^-(11-s))*fq, % Thresh: 0.0015....,0.375,0.75 
                gain(i1,i2) = 2^s;       % Gain:   2,4,8,16,......512,1024 
            end                          % Assigns 11 power-of-two gains. 
        end 
    end 
end 
 
% CREATION OF PHASE MODULATION COEFFICIENTS : 
 
vphase1  = angle(complexRangeProfile);            % Phase of combined signal 
vphase2  = vphase1*2^nbitsdop/(2*pi);   % Adjusts values from 0 to 31.99 
phaseinc = zeros(M,windowSize);          
for i6 = 1:M,            % Turn phases into phase increments 
  for i7 = 1:windowSize, 
    if i7==1, 
       phaseinc(i6,i7) = phaseinc(i6,i7)+vphase2(i6,i7);     
    else                                % Finds phase increments bet/pulses 
       phaseinc(i6,i7) = phaseinc(i6,i7-1)+vphase2(i6,i7-1)-vphase2(i6,i7); 
    end                                  
  end 
end 
for i8 = 1:windowSize,                       
   for i9 = 1:M,                  % 5 bit quantization in 32 levels. 
      phasecoeff(i9,i8) = fix(rem(phaseinc(i9,i8)+32,32));   
   end 
end 
 
%    MODULATION COEFFICIENTS ARE STORED SERIALLY, SO THEY CAN BE LOADED BY  
% THE DIS SIMULATION PROGRAM : 
 
filename = ['paraMULTIq4Ship_',int2str(winNum),'.txt']; 
f4 = fopen(filename,'w');  % Stores modulation coefficients 
fprintf(f4,'%d\r\n',rag_pts);   % # of chirp pulse samples 
fprintf(f4,'%d\r\n',windowSize);   % # of Doppler bins 
fprintf(f4,'%d\r\n',M);   % # of taplines (target extent) 
for aa=1:windowSize,            
   for bb=1:M, 
      fprintf(f4,'%d\r\n',gain(bb,aa)); % Stores gain coefficients 
   end 
end 
for aa = 1:windowSize,       
   for bb = 1:M,                              
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      fprintf(f4,'%d\r\n',phasecoeff(bb,aa));  % Stores phase coefficients 
   end 
end 
fclose(f4); 
 
% PLOT OF THE GAIN QUANTIZATION SCHEME : 
 
figure                                   
plot(amp/max(max(amp)),gain,'b*');       % Plots gain coefficient distrib. 
title('Plot of the Gain Quantization Scheme'); 
 
%************************************************************************** 
%  RunDIS.m                                                               * 
%  - Modified version of Mathost_v6.m                                     * 
%  - Creates and stores an intercepted chirp pulse as generated by a      * 
%  phase sampling DRFM.                                                   * 
%  - Creates the reference signal required for ISAR range compression.    * 
%  - Runs 'simhwchk_v5.m' to execute the DIS and ISAR simulation          * 
%  - 'image_analysis.m' can be run if infinite resolution case exists.    * 
%                                                                         * 
%  Modified by C. Adams June 2003 based on previous version from P.E.Pace * 
%  and F. LeDantec                                                        *     
%************************************************************************** 
 
function runDIS(windowSize,rg_pts,M,rag_pts,k,t0,prf,nbitsdop, winNum) 
 
% GENERATION OF DRFM SIGNAL CONTAINING PHASE SAMPLES FOR ALL PULSES : 
pri_rg_phaseq = zeros(windowSize,rag_pts);  % Initializes DRFM phase matrix 
p = 2*pi/(2^nbitsdop);                  % Phase quantization factor 
pri = 1/prf; 
fc= (9:0.5:12.5)*1e9; 
for i=1:log2(windowSize/8); 
    fc=[fc fc]; 
end; 
for idx1 = 1:windowSize,                    % loop per pulse 
   t1 = t0 + idx1*pri;                  % PRI time shift for pulse samples 
   oldphase = 2*pi*(k*t1.*t1)/2;        % Chirp pulse phase samples 
   oldphase = rem(oldphase,2*pi);       % limit phase from 0 to 2pi 
   pri_rg_phaseq(idx1,:)=fix(oldphase/p);%Phase quantized in 2^nbit levels 
   crefc(:,idx1) = exp(j*oldphase.');   % Store phase for ISAR reference 
end 
 
% STORAGE OF DRFM PHASE MATRIX : 
f2 = fopen('rawint.txt','w');           % Opens file for DRFM ph. storage 
for i = 1:windowSize,                       % Loop for all pulses. 
   int_raw = pri_rg_phaseq(i,1:rag_pts-1); 
   fprintf(f2,'%d,',int_raw);           % Stores pulse phase samples 
   int_raw = pri_rg_phaseq(i,rag_pts); 
   fprintf(f2,'%d\r\n',int_raw);        % Stores last pulse phase sample 
end;         
fclose(f2); 
 
% GENERATION OF ISAR REFERENCE FOR RANGE COMPRESSION (FAST CORRELATION) : 
cref = conj(fft(crefc,2*rg_pts-1));    % FFT of ISAR reference 
save pc_ref cref t1                    % Saves FFT of ISAR ref. 
 
% DIS SIMULATION, IMAGE GENERATION AN ANALYSIS : 
simhwchk_v5(rg_pts, prf, windowSize, M, winNum);                           % 
DIS simulation & ISAR procesing 
%Image_Analysis; 
 
%************************************************************************** 
%  simhwchk_v5.m                                                          * 
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%                                                                         * 
%  Simulates the DIS architecture by:                                     * 
%  - Loading its inputs from files 'paraMULTIq4Ship.txt' and 'rawint.txt' * 
%  - Processing the modulations of the tap array.                         * 
%  - Generating the output chirp.                                         * 
%  Simulates the ISAR processing and plots the range-Doppler profile of   * 
%  the false target as seen in the radar screen.                          * 
%                                                                         * 
%  Modified by C. Adams June 2003 based on previous version from P.E.Pace * 
%  and F. LeDantec                                                        * 
%************************************************************************** 
 
function simhwchk_v5(rg_pts, prf, windowSize, M, winNum) 
 
filename = ['paraMULTIq4Ship_',int2str(winNum),'.txt']; 
fid = fopen(filename,'r');     % Opens file w/DIS coefficients 
tmp = fscanf(fid,'%f');                     % Loads file contents 
nRangeCell = tmp(1);                        % number of pulse samples  
nDopplerCell = tmp(2);                      % number of pulses integrated 
M = tmp(3);                           % number of DIS range taps 
gainIn = tmp(4:4+M*nDopplerCell-1);   % Extracts gain coefficients 
gain = reshape(gainIn,M,nDopplerCell);% Arranges them in a matrix 
gain = gain';                               % Transpose 
phi = tmp(4+M*nDopplerCell:end);      % Extracts gain coefficients 
phasInc = reshape(phi,M,nDopplerCell);% Arranges them in a matrix 
fclose(fid); 
raw = zeros(nDopplerCell,nRangeCell);       % Initializes DRFM phase matrix 
fid = fopen('rawint.txt','r');              % Opens file w/DRFM samples 
for r = 1:nDopplerCell,                     % Loop per pulse 
    for i2 = 1:nRangeCell-1,                % Loop per sample 
        raw(r,i2)=fscanf(fid,'%f',1);       % Loads DRFM phase sample 
        comma = fscanf(fid,'%c',1);         % Loads comma character 
    end 
    raw(r,nRangeCell) = fscanf(fid,'%f',1); % Last pulse phase sample 
end 
fclose(fid); 
[row,col] = size(raw);   
phaDRFM = [raw,zeros(row,M-1)];       % Trailing zeros to clear taps 
 
colordef white 
set(0,'defaultAxesFontSize',12);            % Font size for graph labels 
figure                                      % Plots one intercepted pulse 
plot( real( exp(j*phaDRFM( 1,1:(nRangeCell+M-1) )/32*2*pi )),'b') 
title('Plot of an intercepted ISAR chirp as generated by a DRFM'); 
 
depthLUT = 32;                              % Size of the LUT table 
load -ascii cosine8.txt                     % Loads LUT tables 
load -ascii sine8.txt               
lutOut  = zeros(M,1);                 % Initializes LUT output 
tapOut  = zeros(nRangeCell + (M-1),M); 
o_res   = 0.25;                             % Minimum output bit resolution  
overflow= 0;                                % Initializes overflow counter 
peak    = 0;                                % Initializes maximum amplitude 
limit   = 8192;                             % Adder overflow limit 2^13 
partial_tapsum = zeros(nRangeCell+M-1,1); 
 
for batchCnt = 1:nDopplerCell,                        % Loop per ISAR pulse 
    disp(['Processing Pulse ',num2str(batchCnt)]); 
    for inPlsCnt = 1:(nRangeCell+M-1),          % Per out plse sample 
        tapIn(1:M) = phaDRFM(batchCnt,inPlsCnt);% Loads DRFM Pha in// 
        phAddOut= tapIn(1:M)'+phasInc(:,batchCnt); % Pha adder output 
        tmp = rem(phAddOut+depthLUT,depthLUT)+1;      % Phas limit bet 0-31 
        lutOut = cosine8(tmp) + j*sine8(tmp);         % LUT table output 
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        gainOut = gain(batchCnt,:)'.*lutOut;          % Gain modulation 
        if inPlsCnt > nRangeCell,                     % Shuts down taps       
            gain0ut(1:(inPlsCnt-nRangeCell)) = 0;     % after pulse passes 
        end 
        for idx3=1:M,               
            delay = idx3-1;           % Out.adder register delay bet/taps 
            tapOut(inPlsCnt+delay,idx3)=fix(gainOut(idx3)/o_res)*o_res;   
        end                           % Applies minimum register resolution 
        sum1=0; 
        for tt=min(inPlsCnt,M):-1:max(1,inPlsCnt-nRangeCell), 
           sum1 = sum1 + tapOut(inPlsCnt,tt); 
           Iout=real(sum1);           % Overflow simulation using +/-limit 
           Qout=imag(sum1);    
 %          if Iout >= limit,                    % Positive oflow (in-phase) 
               %Iout = limit; 
%               sum1 = Iout-2*limit + j*Qout;    % Adder output w/overflow 
%               overflow = overflow + 1;         % Increases counter 
%           elseif Iout < -limit,                % Negative oflow (quad-pha) 
               %Iout = -limit; 
%               sum1 = Iout+2*limit + j*Qout;    % Adder output w/overflow 
%               overflow = overflow + 1;         % Increases counter        
%           end 
%           if Qout >= limit,                    % Positive oflow (in-phase)   
               %Qout = limit; 
%               sum1 = Iout + j*(Qout-2*limit);  % Adder output w/overflow 
%               overflow = overflow + 1;         % Increases counter 
%           elseif Qout < -limit,                % Negative oflow (quad-pha) 
               %Qout = -limit; 
%               sum1 = Iout + j*(Qout+2*limit);  % Adder output w/overflow 
%               overflow = overflow + 1;         % Increases counter   
%           end 
           peak=max(max(abs(Iout),abs(Qout)),peak);   % End of oflow simul.            
           partial_tapsum(inPlsCnt,1) = sum1;  
        end 
    end                                          
    finalAdderOut(batchCnt,:)=partial_tapsum.'; % DIS output mod. chirps 
end                                              
overflow                                        % Number of DIS overflows 
peak                                            % Maximum DIS amplitude 
dac_res = 0.25;                                 % DAC resol 0.25 for 16bit 
finalAdderOut = fix(finalAdderOut/dac_res)*dac_res; 
figure                                  %  Plots 1 DIS output chirp pulse 
plot( real( finalAdderOut(1,:) ),'b'),axis tight 
title('Plot of the DIS output chirp pulse'); 
 
 
% ISAR PROCESSING : 
 
load pc_ref                             % Loads FFT of ISAR reference 
priRgMapShift = zeros(M/8*9,nDopplerCell); 
    % Range compression: 
pcRefMapShift = fft(finalAdderOut.',2*rg_pts-1).'; % FFT of DIS output 
for idx = 1:nDopplerCell,                       % Loop for each pulse 
  tmp  = cref(:,idx).*pcRefMapShift(idx,:).';   % Fast correl(FFT product)            
  tmp2 = ifft(tmp);                             % Obtains range profile 
  priRgMapShift(:,idx)=tmp2(1:fix(M/8*9));% Collects range profiles 
end 
    % Azimuth compression:  
    % FFT of matrix of range profiles in the pulse index dimension (time) 
    % gives the target range Doppler profile. 
dpRgMapShiftMOD = abs(fft(priRgMapShift.',nDopplerCell));  
quantimage = dpRgMapShiftMOD(1:nDopplerCell*100/prf,1:fix(M/8*9)); 
save finresoldata quantimage            % Saves Range Doppler profile 
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% ISAR IMAGE PLOTS (Range Doppler profile): 
 
dopp = (1:size(quantimage,1))*prf/windowSize; % Doppler axis 
rang = 1:size(quantimage,2);                    % Range axis 
colordef black                                  % Background color 
figure;  
Ncontours = 120;                                % # of plot contour lines 
contour(rang,dopp,quantimage,Ncontours);        % Contour Plot 
%title('Range-Doppler profile of a false target'); 
xlabel('Down Range Cells');  
ylabel('Doppler frequency [Hertz]'); 
axis tight 
figure; 
colormap(hot(100)) 
surf(rang,dopp,quantimage), shading interp, lighting phong, view(0,90); 
%title('Range-Doppler profile of a false target'); 
xlabel('Down Range Cells');  
ylabel('Doppler frequency [Hertz]'); 
axis tight 
 
 
 

C. CD-ROM DISTRIBUTION AND ONLINE AVAILABILITY 

Due to the large size of the X3D 3D ISAR Simulation and NURBS 

implementation, their associated code is available only in a cd-rom.  All software 

associated with this thesis, including the MATLAB modifications, X3D Simulation, and 

NURBS code is contained in the cd-rom, available upon request from the 

Center for Joint Services Electronic Warfare 

C/O Professor P.E. Pace 

Naval Postgraduate School 

Code EC/PC 

Monterey, CA 93943 

(831) 656-3286 

pepace@nps.navy.mil. 
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